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Figure 1. Using only 4D range-Doppler-azimuth-elevation data from a radar with a 3x4 antenna array – equivalent to a 0.26-
megapixel camera, we trained (separate) radar transformers on 24 hours (1M radar-lidar-camera samples) of data to predict Bird’s Eye
View 2D occupancy (left), 3D occupancy (center), semantic segmetation (right), and Ego-Motion.

Abstract

mmWave radars are compact, inexpensive, and durable sen-
sors that are robust to occlusions and work regardless of
environmental conditions, such as weather and darkness.
However, this comes at the cost of poor angular resolution,
especially for inexpensive single-chip radars, which are typ-
ically used in automotive and indoor sensing applications.
Although many have proposed learning-based methods to
mitigate this weakness, no standardized foundational mod-
els or large datasets for the mmWave radar have emerged,
and practitioners have largely trained task-specific models
from scratch using relatively small datasets.

In this paper, we collect (to our knowledge) the largest
available raw radar dataset with 1M samples (29 hours)
and train a foundational model for 4D single-chip radar,
which can predict 3D occupancy and semantic segmenta-

tion with quality that is typically only possible with much
higher resolution sensors. We demonstrate that our Gener-
alizable Radar Transformer (GRT) generalizes across di-
verse settings, can be fine-tuned for different tasks, and
shows logarithmic data scaling of 20% per 10× data. We
also run extensive ablations on common design decisions,
and find that using raw radar data significantly outperforms
widely-used lossy representations, equivalent to a 10× in-
crease in training data. Finally, we roughly estimate that
≈100M samples (3000 hours) of data are required to fully
exploit the potential of GRT.

1. Introduction
As a compact, inexpensive [27], and robust solid-state sen-
sor, mmWave radars are ideal for sensing applications rang-
ing from simple automatic door openers [58] to autonomous
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drones [11] or vehicles [53, 62]. mmWave radars are
rich sensors which can directly measure range and velocity
while capturing a unique range of material properties [18];
however, this comes at the cost of poor angular resolution
typically on the order of 15◦ – orders of magnitude worse
than cameras or lidars [59].

Radar data are typically processed into radar point
clouds (Fig. 2) derived using Constant False Alarm Rate
(CFAR) peak detectors [36, 52] combined with Angle-of-
Arrival estimation techniques [60]. However, this is a sub-
stantially lossy process: while raw radar data suffers from
unique noise patterns such as “bleed” and side lobes [25],
weak reflectors and other signals can be hidden in this noise,
which would ordinarily be filtered out.

On the other hand, raw spectrum (4D range-Doppler-
azimuth-elevation data cubes [50]) can be unintuitive and
difficult to interpret compared to lidar point clouds or cam-
era images, and include properties such as specularity and
Doppler which lack straight-forward Cartesian interpreta-
tions [18]. As such, many machine learning methods have
been proposed [24, 45, 69] to exploit 4D radar data from
single-chip radars, achieving remarkable performance on
2D scene understanding tasks. However, due to the dom-
inance of CFAR point clouds in radar processing, as well
as the high data rate of raw mmWave radar data, most radar
toolchains only process point-cloud data. Tooling for raw
I/Q (in-phase/quadrature) data is often brittle, poorly docu-
mented, and largely unsupported by radar vendors, severely
limiting the availability and scale of both raw mmWave
datasets and the models which operate on raw data.

To rectify this limitation, we develop an open-source
toolchain and associated large dataset specifically for 4D
mmWave radar data. Training a radar-to-lidar model and
fine-tuning for a range of other tasks, we demonstrate the
surprising effectiveness of mmWave radar models trained
at scale (Fig. 1). Going further, just as large foundational
models [4] have greatly accelerated the pace of innovation
in computer vision and natural language processing, we
believe that a foundational model for raw mmWave radar
trained at even larger scale could similarly supercharge the
advancement of radar sensing techniques.

Contributions In this paper, we develop a full stack1 for
collecting data, training, and evaluating a transformer for
4D single-chip radar to quantify both the potential costs and
benefits of training a foundational model at scale. To sum-
marize our contributions:
(1) We develop a compact, lightweight multimodal data

collection system (Sec. 3.1) capable of collecting syn-
chronized raw radar, Lidar, and camera data which can
be operated as a handheld device. Our system can be

1Our data collection system, dataset, code, and model can be found via
our project site: https://wiselabcmu.github.io/grt/.
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Figure 2. While a transformer can generate Lidar-like depth and
bird’s eye view images, traditional CFAR point clouds are noisy,
and have poor angular resolution – especially in the elevation axis.

easily replicated using off-the-shelf components, 3D
printed parts, and our open-source software.

(2) Using this data collection system, we collect a dataset,
I/Q-1M (One Million IQ Frames), consisting of 29
hours of data – 8× longer than the next largest pub-
licly available raw radar dataset – split between in-
door, outdoor-handheld, and bike-mounted settings,
each with different radar configurations (Sec. 3.2).

(3) Finally, using our dataset, we train a Generalizable
Radar Transformer (GRT), which can output depth
maps and segmentation images with quality which is
typically only possible with much higher resolution
radars. Using GRT, we then run ablations on common
design choices (Sec. 5.1), quantify the scalability of
GRTs with increasing dataset and model size (Sec. 5.2,
5.4), and demonstrate that our GRT can be readily fine-
tuned for other tasks and settings (Sec. 5.3), including
obtaining state-of-the-art performance on the Coloradar
[23] dataset with 30-minutes of fine-tuning.

Key Findings We summarize our key findings as follows:
• Radar models can generalize to different settings and

radar configurations (Sec. 5.2), as well as across objec-
tives (with some fine-tuning). This suggests great po-
tential for a cross-domain foundational model to improve
and accelerate the development of new radar models.

• Using raw data yields outsized performance gains,
equivalent to more than a 10× increase in training data
(Sec. 5.1). While existing datasets largely focus on CFAR
point clouds or other processed representations, we be-
lieve that more emphasis should be placed on making raw
data available for research.

• Existing mmWave radar datasets are vastly under-
sized. 24 hours of training data is not enough to saturate
even a 4M parameter model! Our analysis suggests that
at least 100× more data is required to exploit the full
potential of radar transformer models (Sec. 5.4).
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Figure 3. Our data collection rig in its handheld (right) and bike-
mounted (left) configurations; see App. A for additional images.

Limitations Despite its size compared to previous
datasets, I/Q-1M is quite small compared to the datasets
used to train modern vision transformers, which can exceed
billions of samples [68]. I/Q-1M also only includes daylight
conditions and fair weather, and lacks the scale to capture
“edge cases” that would be represented in a larger dataset
[22]. Finally, since I/Q-1M uses a single type of radar, we
cannot evaluate generalization across different antenna con-
figurations — only radar configurations.

2. Related Work
4D Solid State Radar Excluding mechanical radars,
which perceive the world as lidar-like 2D heatmaps [3, 5,
54] via a rotating antenna, solid-state mmWave radars oper-
ate by transmitting and receiving a sequence of frequency-
modulated “chirps” from an array of transmit (TX) and re-
ceive (RX) antenna [19]; this data is typically (losslessly)
transformed to a 4D range-Doppler-azimuth-elevation data
cube using a 4D FFT [50], whose resolutions are con-
strained by bandwidth, form factor, and the integration win-
dow. We focus on single-chip radars which have compact
form factors – and thus poor angular resolution.

Learning and Datasets for 4D Radar Most radar pro-
cessing methods use point clouds extracted from the 4D
cubes [36, 52] as inputs [1, 7, 32, 44, 55, 56], allowing them
to re-use popular Lidar architectures or even pre-trained
models such as PointNet [46]. However, since this discards
much of the information contained in a 4D radar cube, many
competing approaches propose to directly interpret the 4D
radar cube using methods and architectures such as feedfor-
ward convolutional architectures [9, 38, 43, 49, 69], multi-
view convolutional networks across different tensor axes
[13, 34, 40], U-Nets [26, 39, 45], diffusion models [70],
and transformers [2, 15, 21, 21].

These prior machine learning-based approaches rely on
publicly available datasets with 4D radar data, including

Table 1. Comparison with other single-chip mmWave radar
datasets; a frame refers to the number of unique radar-sensor sam-
ples. For comparisons with datasets using other types of radar, see
App. A.3. Our dataset is significantly larger than previous single-
chip radar datasets, enabling us to explore scaling up models.

Dataset 4D Data Cube Dataset Size

I/Q-1M (Ours) Yes 29 hours (1M frames)
MilliPoint [7] No (3D Points) 6.3 Hours (545k frames)
RaDICal [29] Yes 3.6 Hours (394k frames)
CRUW [63] No (2D Map) 3 hours (400k frames)

Coloradar [23] Yes 2.4 hours (82k frames)
RadarHD [45] Yes 200k frames

CARRADA [41] No (3D Cube) 21 Minutes (13k frames)
RADDet [69] Yes 10k frames

from both cascaded [42, 49] and single-chip [23, 29, 69]
radars; however, existing datasets are relatively small, with
3.6-hour RaDICal [29] and 2.4-hour Coloradar [23] as the
largest (Table 1). Due to the success of powerful but data-
hungry [68] transformer models [61] in computer vision
[12], we believe that limited data availability imposes a sub-
stantial bottleneck on learning for 4D radar.

High-resolution Imaging from Low-Resolution Radar
Due to the low angular resolution of single-chip radars, ex-
tracting high-resolution angular information can be chal-
lenging; as a result, prior work focuses on recovering 2D
spatial information [15, 45, 70]. Thus, while prior methods
can extract 3D information using high-resolution cascaded
radars [10], 3D imaging from single-chip radars generally
requires additional information such as structured motion or
multiple views, for example segmentation and maps using a
rotating single-chip radar [24], a 3D occupancy map using
multiple views [18], or high resolution images from fixed
trajectories using Synthetic Aperture Radar [14, 35, 66, 67].
Instead, we show that by leveraging a sufficiently large
dataset, even single frames are sufficient to recover dense
angular resolution in both azimuth and elevation.

3. Data Collection System and Dataset
Dataset scale is key to training and evaluating potential
foundational models. As such, we developed a scalable data
collection system (Fig. 3), which we used to collect a large
raw mmWave radar dataset, consisting of 1M radar-lidar-
camera samples over 29 hours (Table 1). For additional de-
tails on our dataset and data collection rig, see App. A.

3.1. Data Collection System
Our data collection system, red-rover, was built around
a TI AWR1843 Radar, Lidar, Camera, and IMU which can
be easily operated via a simple web app on a mobile phone.
Our system records all data to a single hot-swappable ex-
ternal drive via a single linux computer which handles time
synchronization, minimizing turnaround time.
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Table 2. Key specifications for each setting. Settings have vary-
ing max Doppler Dmax and range Rmax; all traces used a fixed res-
olution of 64 Doppler and 256 range bins.

Setting Size Length Average Speed Dmax Rmax

indoor 310k 8.9h 1.0m/s 1.2m/s 11.2m
outdoor 372k 10.7h 1.4m/s 1.8m/s 22.4m
bike 333k 9.3h 5.4m/s 8.0m/s 22.4m

Table 3. Transformer sizes. Layers indicates the number of
encoder + decoder layers; Speed indicates the (batched) in-
ference throughput of each model on a single RTX 4090.

Size Layers Dimension Params Speed

pico 2 + 2 256 (4 heads) 3.9M 750 fps
tiny 3 + 3 384 (6 heads) 12.7M 320 fps
small 4 + 4 512 (8 heads) 28.9M 170 fps
medium 6 + 6 640 (10 heads) 69.4M 84 fps
large 9 + 9 768 (12 heads) 149M 44 fps

We also designed our data collection system to have a
compact, battery-operated form factor to allow for a vari-
ety of collection modalities, including handheld and bicy-
cle mounted. This also allows us to collect data relevant
for tasks such as indoor sensing and localization, which are
underrepresented in existing datasets, while still collecting
automotive-like data by mounting our system to an E-bike.

3.2. Collected Data
We collected three roughly equally sized splits (Table 2)
from indoor handheld, outdoor handheld, and bike-mounted
settings on the CMU campus and Pittsburgh area:
• indoor: inside buildings at a slow to moderate walking

pace, visiting multiple floors and areas within each.
• outdoor: neighborhoods ranging from single family

detached to high density commercial zoning at a mod-
erate to fast walking pace.

• bike: bike rides in different directions from a set starting
point with a moderate biking pace.

Each setting features a mobile observer, with radar modu-
lation parameters tuned for typical speeds. For sample data
from each setting, see App. A.4.

4. Methodology
Using a transformer architecture (Sec. 4.1), we train our
Generalizable Radar Transformer (GRT) for a range of dif-
ferent tasks (Sec. 4.2-4.3), and evaluate it on our dataset
using a rigorous statistical methodology (Sec. 4.4).

4.1. Model Architecture
While many architectural refinements exist for vision trans-
formers [30, 48], as well as for radar specifically [15, 26],
we use a direct adaptation (Fig. 4) of the original Trans-
former [61] and Vision Transformer [12] to focus on mea-
suring the fundamental properties of Radar transformers.

Radar Processing From the (slow time, TX, RX, fast
time) I/Q stream, we perform a 4-Dimensional FFT to ob-
tain (range, Doppler, azimuth, elevation) dense 4D radar
data cubes of size (256, 64, 8, 2), which we provide to
the model as two channels consisting of the amplitude and
phase angle. This data cube is patched along the range and
Doppler dimensions into patches of size 4 × 2(×8 × 2),
yielding an initial set of 64× 32 = 2048 patch tokens.

Transformer Architecture Crucially, unlike a vision
transformer [12], radar models take inputs that have differ-
ent spatial axes than their outputs, with vastly different rela-
tive resolutions where they overlap. As such, we use a stan-
dard transformer with a decoder [61], with varying layers
and widths (Table 3); for a full specification of our trans-
former architecture and training procedure, see App. B.1.

Decoder Query To handle the “change of basis” between
the input and output space, we use an architecture based
on Perceiver I/O [20]. We start by concatenating a (learned)
output token to the encoder (similar to standard vision trans-
former [8]). The encoder output corresponding to the output
token is then tiled into the desired decoder shape with a 3D
sinusoidal positional encoding applied and is used as the
input to the decoder, which attends to the encoder outputs.

4.2. Base Task: 3D Occupancy Classification
An ideal foundational model training task should be easy
to gather data for (e.g., using self-supervised learning) and
closely aligned with a wide range of potential downstream
tasks. As such, since we are primarily concerned with un-
derstanding the spatial relationship between 4D radar data
and 3D space, we use 3D (polar) occupancy classification –
predicting the occupancy of 64× 128× 64 range-azimuth-
elevation cells – as a base task, with Lidar as a ground truth.
Our task uses a binary cross entropy objective, with some
weighting to correct for cell sizes; see App. B.3 for details.

Notably, in addition to being fully self-supervised, this
task covers all three possible output dimensions (range, az-
imuth, and elevation), meaning that downstream tasks such
as range-azimuth classification or azimuth-elevation seg-
mentation can be cast as 2D slices of this 3D output. This
enables us to fine-tune for tasks, even if they have different
spatial dimensions, simply by replacing the output head and
modifying the output positional encoding queries.

4.3. Other Tasks
In order to evaluate GRT’s suitability as a foundational
model for downstream fine-tuning, we use three additional
tasks, each representing different output dimensions:
• Bird’s Eye View (BEV) Occupancy: Similarly to [15,

45], we classify the 256× 1024 range-azimuth polar oc-
cupancy using Lidar as a ground truth, with the range nor-
malized to the radar’s range resolution.
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Figure 4. The GRT architecture. 4D radar cubes are patched with a linear projection, and a sinusoidal positional encoding is added.
A transformer architecture is then used, with a transformer decoder for dense outputs and a MLP decoder for Ego-Motion estimation;
different output encodings are used depending on the output axes and resolution.

• Semantic Segmentation: Similar to [24], we train our
GRT to output 640×640 azimuth-elevation class labels.
Since radars cannot feasibly identify many classes (e.g.,
poster vs. sign vs. wall) which a camera could, we use
eight coarse categories: person, sky, vehicle, flat, nature,
structure, ceiling, and object.

• Ego-Motion Estimation: Since radars can “natively”
measure velocity2, we predict the velocity of the radar
relative to its current orientation. Since ego-motion es-
timation does not require a dense output, we replace
the transformer decoder with a multi-layer-perceptron de-
coder head with 3 layers of 512 units.

For more detail about each task, see App. B.3.

4.4. Evaluation

Due to the cost of scaling foundational models, false posi-
tives can result in significant wasted resources, especially if
associated with a costly methodological change. As such,
since our dataset cannot be treated as having an “infinite
sample size”, we calculate upper-bounded uncertainty esti-
mates wherever possible. In order to ensure these results are
statistically accurate, we take the following steps:
• Geo-Split: Within each setting, ≈1.5 hours of data was

reserved as a test set, which we ensured to be geographi-
cally disjoint from the training set to prevent leakage [28].

• Sample Size correction: Time series signals – e.g. radar-
lidar-video tuples – cannot be viewed as independent
samples; as such, the effective sample size, which we ob-
tain from an autocorrelation-based estimate [51], must be
used when calculating the standard error.

• Paired z-Test: Using the fact that models are evaluated
on the same test traces, we use a paired z-test on the rela-
tive performance of each model with respect to a baseline.

We report each metric relative to its specified baseline by
default, along with error bars for a two-sided 95% con-
fidence interval; using our procedure and dataset, we can
measure differences of 1-2% (App. B.4).

2Sensors which provide “absolute” pose, e.g. Lidars and Cameras,
must differentiate, while IMUs must integrate.

Validation Split and Data Size Sampling. We used the
last 10% of each training trace for validation (separate from
the test set), with the first 90% used for training. When
training on reduced dataset sizes, we use the first 9%, 18%,
and 45% of each trace for training for 10%, 20%, 50%
dataset sizes respectively; to reduce the variance of our ex-
periments, we always 10% of each trace for validation.

5. Results
Using our dataset, we first ran extensive ablation (Sec. 5.1),
scaling (Sec. 5.2), and fine-tuning (Sec. 5.3) experiments
which show the efficacy, scalability, and generalizability of
GRT. Our experiments took 874 RTX 4090-hours3 of train-
ing time, with the GRT-smallmodel taking 22 RTX 4090-
hours to train.

Model Performance Despite the low resolution (only 3
TX × 4 TX antenna) of our radar, GRT is able to pre-
dict a range of outputs with remarkable quality (Fig. 5);
we show additional examples in App. C.1. We also evalu-
ated common metrics for each objective as an absolute ref-
erence (App. C.2); GRT achieves a 3D chamfer distance
of 4.9 range bins, corresponding to 0.66m indoors, 1.6m
outdoors, and 1.5m on bike.

5.1. Ablation Studies
Using our dataset and GRT, we performed ablation studies
on several parameters that are independent of the underly-
ing architecture and the task (Table 4). In particular, we find
that several common practices – omitting Doppler informa-
tion, using Angle-of-Arrival Estimates, and applying CFAR
thresholding – result in degraded performance equivalent to
more than a 10× reduction in training data.

Input Representation Our models use complex 4D radar
cubes that losslessly capture all information measured by a
radar; however, the common practice in radar models and
data sets is to use processed higher-level representations.
We benchmark three common approaches:

3Our experiments were run on a range of different machines with vary-
ing compute capacity, which we normalize with respect to a single RTX
4090. We only tracked training and validation time, with testing excluded.
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Figure 5. Training with more data and fine tuning instead of starting from scratch lead to much higher performance. 3D occupancy
maps are less noisy as seen in rendered depth images (left), semantic segmentation is cleaner (center left), bird’s eye view occupancy is
sharper (center right), and velocity estimation is more accurate (right). However, scaling model size (left) does not have a large impact.

• Real (amplitude-only) 4D data cubes are not signifi-
cantly different from complex data, indicating that the
“leftover” phase from a Doppler FFT carries little addi-
tional information. Since using complex data has negligi-
ble compute overhead, we default to complex inputs.

• Angle of Arrival Estimates can be used to replace dense
antenna measurements. Since our radar has only 2 ele-
vation bins, we reduce the azimuth axis (8 bins) into an
AoA estimate. This discards a substantial amount of in-
formation, leading to a 28.0% loss increase, equivalent to
more than a 10× decrease in the size of the dataset.

• Constant False Alarm Rate (CFAR) processing re-
moves weak or noisy reflectors based on local estimates
of background noise [36]; this ablation uses a p-value
threshold of 0.05, and zeros out rejected points. This
leads to an even higher 31.5% loss increase.

Impact of Doppler With limited angular resolution, GRT
is highly dependent on Doppler information, which can cap-
ture higher resolution geometry [18]. We find that removing
the Doppler FFT from our processing pipeline (i.e. treating
each 4D radar cube as a time series of 64 3D frames [45])
leads to a 22.5% loss increase. As an additional ablation, we
also shuffle the slow-time axis to fully destroy any Doppler
information; this does not lead to a futher significant loss
increase, suggesting that off-the-shelf transformers cannot
easily learn FFTs. Finally, we observe worse performance
at low speeds since less Doppler information is available at
slow speeds (App. C.3).

Table 4. Test loss for each ablation (smaller is better) relative to
GRT-small trained on our full dataset, along with 95% confi-
dence intervals for the relative differences.

Ablation Relative Test Loss

Inputs Amplitude Only +0.04± 0.85%
Angle of Arrival +28.0± 2.12%
CFAR Thresholding +31.5± 2.38%

Doppler Without Doppler FFT +22.5± 1.76%
Slow Time Shuffled +23.10± 1.94%

Post-Patch Axes Doppler-Az-El +6.22± 1.11%
Range-Az-El +6.27± 1.10%
Range-Doppler-Az-El +4.18± 1.09%

Augmentations None +5.87± 1.32%
Scale, Phase, and Flip Only +3.89± 1.19%

Separate Models Indoor Data Only +5.76± 1.85%
Outdoor Data Only +5.58± 1.26%
Bike Data Only +2.77± 1.41%

Patch Axes Since 4D range-Doppler-azimuth-elevation
radar data cubes have four axes with different properties,
they do not have an obvious counterpart to the square
patches used in Vision Transformers. Benchmarking four
alternatives (App. B.1), with each resulting in 2048 total
patches, we find that Range-Doppler patching where the
azimuth and elevation axes are “patched out” (similar to
[15, 49]) is the most effective, performing ≈5% better.

Data Augmentations We develop a range of data aug-
mentations that together provide a modest but significant
performance improvement (5.87±1.32%; Table 4); we pro-
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vide details about each augmentation in App. B.2.

5.2. Towards a Radar Foundational Model
Scalability vs. Baselines Since prior work on learning for
single-chip radar focuses on 2D outputs, we benchmark our
transformer-based approach against two prior architectures
for 2D BEV Occupancy prediction: a U-Net-based model
(RadarHD [45]), and a Swin Transformer-based model (T-
FFTRadNet [15]), with minor architecture modifications
to conform to our data dimensions (App. B.5). We find
that GRT-small outperforms both baselines at all training
splits (Fig. 7), demonstrating the suitability of transformer
architectures for scalability.

Scaling Laws Training 20 different models for 5 differ-
ent sizes (Table 3) and dataset sizes ranging from 10-100%
of our data (Fig. 6), we observe a logarithmic improve-
ment with data size of approximately 20% improvement
per 10× increase in data, similar to early observations in
computer vision [57]. This can also be seen qualitatively
(Fig. 5), where models trained on more data produce much
higher quality predictions. Similarly to vision transform-
ers [57, 68], we also observe that larger models are more
data efficient, although the magnitude of difference that we
observe is much smaller due to our limited dataset size.

Table 5. Chamfer Distance (in meters) for 2D BEV occupancy
prediction on the Coloradar dataset [23] by location; the geo-
metric mean is listed to account for the varying difficulty of each
location. A fine-tuned GRT model outperforms baselines trained
only on Coloradar, including a state of the art diffusion-based
model [70] and a U-Net based model [45].

Trace GRT (Ours) Diffusion [70] RadarHD [45]

Geometric Mean 0.98 1.19 1.73
ARPG Lab 0.78 0.96 1.73

EC Hallways 1.04 1.04 1.69
Aspen 0.61 0.51 0.91

Longboard 2.63 5.47 5.40
Outdoors 1.84 2.37 3.10

Edgar 0.36 0.44 0.60

Generalizability across different settings We evaluate
the ability of GRT to generalize across different settings by
comparing a baseline model trained on combined indoor,
outdoor, and bike data with models trained on each set-
ting separately (Table 4). Despite the differences in these
settings, the jointly trained model performs significantly
better than models trained on each setting separately, con-
firming that data from different settings can be combined to
train a single, stronger model.

5.3. As a Base Model for Downstream Tasks

Dataset Fine-tuning We fine-tuned a smallGRT model
on the Coloradar [23] dataset using a BEV Occupancy
objective, and benchmarked the resulting model against
two prior approaches trained only on ColoRadar, includ-
ing a state-of-the-art diffusion model, using the same data
splits and evaluation procedure [70]. Notably, despite us-
ing a modulation and resolution (128 range × 128 Doppler)
which is not present in our dataset, GRT can be run without
any architectural modifications, such as modifying the num-
ber of upsampling stages, as would be required for a convo-
lutional architecture (App. B.5). After fine-tuning until vali-

7



10% 20% 50% 100%
Amount of Training Data 

30%

20%

10%

0%
Re

la
tiv

e 
Te

st
 L

os
s 

Segmentation

10% 20% 50% 100%

0%

5%

10%

Bird's Eye View

10% 20% 50% 100%

25%

20%

15%

10%

5%

0% Ego-Motion

From Scratch Fine Tuned
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Figure 9. A linear projection of the observed logarithmic scaling
to a test loss lower bound suggests that logarithmic scaling cannot
continue beyond 100× our current dataset

dation loss convergece (≈30 minutes of training using a sin-
gle RTX 4090), GRT achieves substantially lower Chamfer
distance than baselines trained only on ColoRadar, showing
the value of easily tunable foundational models (Table 5).

Task Fine-tuning We also fine-tuned GRT-small for
each of our secondary tasks using 10-100% of our dataset,
and compared the results with models trained from scratch
on the same proportions of the dataset. Following this pro-
cedure, we find substantial performance gains equivalent to
up to a 5× increase in dataset size compared to training
from scratch (Fig. 8). This effect is especially pronounced
when less data is available, with the performance benefits of
fine tuning disappearing as the dataset is scaled for the BEV
Occupancy objective but staying more or less constant for
the Semantic Segmentation objective. We also observe this
effect as a clear qualitative difference: fine-tuned models
produce sharper and more accurate predictions than their
counterparts trained from scratch (Fig. 5).

5.4. How Much More Data is Needed?
Although we cannot directly observe performance satura-
tion, we project how much data would be required to satu-
rate a Radar Transformer using two different methods to ar-

rive at a best guess of approximately 100M samples – 100×
our current dataset.

Linear Projection of Scaling Laws To lower-bound the
possible test loss in our dataset, we trained a small model
on the test set to approximate convergence. Assuming that
the rate of improvement in model performance with in-
creased training data cannot decrease, we extend our ob-
served (Fig. 6) logarithmic scaling law to this lower bound
to, in turn, estimate an upper bound for when the logarith-
mic trend will no longer hold (Fig. 9). This yields an esti-
mate of 100× our current dataset size. For additional details
justifying our estimation of this bound, see App. C.4.

Validation Curve Trends We observe that GRTs tend
to stop improving (with respect to validation loss) after
≈10 training epochs, regardless of model or dataset size
(App. C.4); this is similar to trends observed in the train-
ing of data-constrained LLMs, which are also observed to
saturate around 10 epochs [37]. Using vision transformers,
whose scaling laws are well studied [68] due to the avail-
ability of internet data, as a reference, we expect training
saturation to occur around 102−104M samples seen. Since
each epoch in our dataset corresponds to ≈1M samples
seen, this implies that 10× to 1000× our current dataset
size is required to delay overfitting beyond this point.

6. Conclusion

In this paper, we train a Generalizable Radar Transformer
using a large, 29 hour (1M sample) dataset collected us-
ing our open-source data collection system and demonstrate
that our Radar Transformer can generalize across datasets
and settings, can be readily fine-tuned, and exhibits loga-
rithmic scaling. While we believe that substantial gains are
still possible through further data scaling, we hope that our
dataset and baseline models will enable the community to
revisit previous methods in new context and explore new
capabilities made possible by a much larger dataset.
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Towards Foundational Models for Single-Chip Radar

Supplementary Material

A. Data Collection and Dataset Details

Our data collection system, red-rover4, is fully open
source. The data collection rig and control app are shown
in detail in Fig. 11, along with the system in its bike-
mounted configuration in Fig. 10; all parts used can be pur-
chased either off-the-shelf or 3D-printed using an ordinary
3D printer.

Bill of Materials The total cost of the bill of materials
for our data collection system is $4,440 for the base system
(Table 6). Note that the Lidar is the primary contributor to
the cost of our data collection rig; while we use an OS0-128
($12,000), it can be substituted for an OS0-64 ($8,000) or
OS0-32 ($4,000) without any hardware or software modifi-
cations, though at the cost of reduced Lidar data quality.

A detailed bill of materials including all parts used in
the data collection rig (along with CAD files for 3D printed
parts) is available in our red-rover project repository.

Resource Usage For the configurations which we used to
collect I/Q-1M, our data collection rig has the following
overall characteristics:
• Data rate: ≈120GB/hour (≈33MB/s — 260Mbps), with

some variation depending on the compressibility of the
data. In practice, we do not find storage to be a substantial
limitation, with the total dataset size being ≈3.5TB.

• Power consumption: ≈80W average. Using a 240Wh AC
battery bank, this results in around 3 hours of battery life.

A.1. Sensors
Our data collection rig includes a radar, lidar, camera, and
IMU, and records a total data bitrate of ≈260 Mbps. Almost
half of the bitrate is consumed by the radar (126 MBbps),
with the remainder being split between the Camera and Li-
dar, with a negligible amount data recorded from the IMU.

Radar “Boost” development boards for the TI 77GHz
single-chip mmWave radar family5 are commonly used in
academic research, and we are not aware of any raw single-
chip radar datasets – or tooling for data collection – which
uses other radars. As such, we use the AWR1843Boost

4As the successor to our previous rover data collection system [18],
red-rover is named for its distinctive red color.

5TI produces “Boost” series development boards across its range
of 77GHz radars including the AWR1843Boost, the largely identical
IWR1843Boost, and the AWR1642Boost, which is equivalent to the
AWR1843Boost with its middle transmit antenna removed.

Figure 10. Our data collection system, red-rover, in its bike-
mounted configuration. The sensors are mounted to a front rack,
while the support electronics are mounted in the center frame and
the battery at the rear for balance and stability.

Table 6. Bill of materials and approximate cost of major com-
ponents as of time of writing, in US Dollars; carrying equipment
(e.g., backpack, E-bike) and miscellaneous items under $100 (e.g.
cables, screws) are not listed.

Item Cost

Ouster OS0-32/64/128 Lidar $4,000-$12,000
Data Collection Computer $1,000

Black Magic Micro Studio Camera $1,000
Magewell USB-SDI Capture Card $300

OM Systems 9mm f/8 Fisheye Lens $100
TI DCA1000EVM Radar Capture Card $600

TI AWR1843Boost Radar $300
XSens MTi-3 AHRS Development Kit $450

External Storage Drive $330
Battery $240

Hardware for Handles $120
Total $4,440 + Lidar

Radar (and a DCA1000EVM capture card), which is com-
monly used in prior literature [18, 29, 45].

The AWR1843Boost has 3 transmit (TX) and 4 receive
(RX) antennas, resulting in 8 azimuth and 2 elevation bins
(Fig. 12). We configured our radar to record 256 range

1



(a) Data collection rig from the front; the Lidar, Camera, and Radar (red
PCB) along with its capture card (green PCB) are visible, while the IMU
is hidden inside the red (3D-printed) plastic structure.

(b) Data collection rig from behind, showing the control app; the app al-
lows users to specify metadata, then start and stop data collection. A
live console displays logged messages and errors for each sensor.

Figure 11. Close-up views of the handheld data collection rig from the front and back.
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Figure 12. Antenna configuration of the TI AWR1843Boost
radar. The 12 virtual antennas (top right) created by the radar’s
3TX × 4RX antenna array (left) result in 2 elevation and 8 azimuth
bins (lower right).

bins and 64 Doppler bins at 20 Hz, with varying range and
Doppler resolutions depending on the setting; see Table 7
for detailed specifications. In our dataset, we also collect
raw, uncompressed I/Q streams which are quantized as 16-
bit integers by the radar; with the modulations used in our
dataset, the radar has a total bitrate of 126 Mbps.

Crucially, we do not to use a high-resolution imaging
radar (e.g., the 12 × 16 antenna TI MMWCAS-RF-EVM):
in addition to their larger size, weight, and power, imag-
ing radars have an order-of-magnitude higher raw data rate
(e.g., ≈2gbps for an equivalent modulation using the TI
MMWCAS-RF-EVM), which substantially increases the
engineering and infrastructure cost of collecting raw data,
while also making continuous live streaming and real-time
deployment impractical.

Lidar We use an Ouster OS0-128 recording 2048 az-
imuth bins (1024 forward-facing) and 128 elevation beams
at 10Hz. In practice, we find that the OS0 Lidar has a

Table 7. Full radar configurations for each setting. With a fixed
frame size of Nr = 256 samples/chirp and Nd = 64 chirps/frame,
configuring the radar’s chirp rate, ADC sample rate, and chirp
slope determines the range resolution ∆R = Fsc

2Nr
and Doppler

resolution ∆D = λ
2NdTc

along with maximum range Rmax = FSc
2s

and maximum Doppler Dmax = λ
4Tc

, where λ is the radar’s wave-
length (77GHz; λ = 3.9mm) and c is the speed of light.

Setting indoor outdoor bike

Chirp Time Tc 777µs 537µs 120µs
Sample Rate Fs 5MHz 5MHz 10MHz
Chirp Slope S 67MHz/µs 34MHz/µs 34MHz/µs

∆R 4.4cm 8.7cm 8.7cm
Rmax 11.2m 22.4m 22.4m
∆D 3.8cm/s 5.6cm/s 24.9cm/s
Dmax 1.2m/s 1.8m/s 8.0m/s

maximum range of 20-25m: while points further away can
still sometimes be detected, objects are not consistently de-
tected. As such, while our radar can detect objects at much
further ranges, the Lidar forces us to restrict the maximum
range used in our dataset; we plan to acquire a longer-range
Lidar for future iterations of our dataset.

The lidar depth is LZMA-compressed, resulting in a bi-
trate of 14 Mbps. While we do not use these channels in
our paper, we also collect the reflectance and near infrared
background intensity, with a typical data rate of 9 Mbps and
22 Mbps, respectively.

Camera We use a Black Magic Micro Studio Camera
with an OM Systems 9mm f/8 Fisheye lens, recording at
1080p, 30 fps; frames are recorded as a MJPEG video, re-
sulting in a typical bitrate of 88 Mbps. To minimize motion
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Table 8. Comparison with other mmWave radar datasets with raw data (4D data cube or equivalent), and a selection of other large
datasets without raw data. A frame in our table refers to the number of unique radar-sensor tuples. Our dataset is significantly larger than
previous radar datasets, enabling us to scale up training.

Radar Type Dataset 4D Data Cube Dataset Size Other Sensors

Single Chip

IQ-1M (Ours) Yes 29 hours (1M frames) Lidar, Camera, IMU
MilliPoint [7] No (3D Points) 6.3 Hours (545k frames) Depth Camera
nuScenes [6] No (3D Points) 5.5 hours (400k frames) Lidar, Camera, IMU, GPS
RaDICal [29] Yes 3.6 Hours (394k frames) Depth Camera, IMU
Coloradar [23] Yes 2.4 hours (82k frames) Lidar, IMU

CRUW [63] No (2D Map) 3 hours (400k frames) Stereo Cameras
RadarHD [45] Yes 200k frames Lidar

CARRADA [41] No (3D Cube) 21 Minutes (13k frames) Camera
RADDet [69] Yes 10k frames Camera

Cascaded
Radatron [33] No (3D Cube) 4.2 hours (152k frames) Camera
K-radar [42] Yes 35k frames Lidar, Camera, IMU, GPS
RADIal [49] Yes 20k frames Lidar, Camera, GPS

Mechanical
Oxford Radar RobotCar [3] No (2D Image) 17 Hours (240k Frames) Lidar, Camera, GPS

RADIATE [54] No (2D Image) 5.0 hours (72k frames) Lidar, Camera, GPS
Boreas [5] No (2D Image) 350km Lidar, Camera

blur, the camera is set to 18 db gain; the shutter speed is set
to automatic. Note that while our camera and capture card
are capable of 60 fps recording, we record only 30 fps since
we find that 30 fps recording is far more stable than 60 fps
(especially with regard to dropped frames), and since since
the downstream tasks which we envision cannot easily take
advantage of 60 fps video.

IMU We include a XSens MTi-3 IMU which is used for
Cartographer SLAM in conjunction with our Lidar. The
IMU records acceleration, angular velocity, and rotation at
100 Hz, with a total bitrate of 35 Kbps.

A.2. Time Synchronization
While each sensor is recorded against the same system
clock, we asynchronously record each at its full “native”
speed. To generate radar-lidar-camera samples, we align
higher frequency sensors (radar – 20Hz; camera – 30Hz)
to the Lidar (10Hz) by selecting the nearest sample in time
to each lidar frame. Since our data collection implemen-
tations for each sensor have variable initialization and de-
initialization time, we also trim regions at the start and end
of each trace which do not have coverage from all sensors.

A.3. Comparison with Other Datasets
Table 8 enumerates a number of radar datasets sorted by
radar type, along with their sizes and included sensors.
Since different types of radars have substantially different
operating modes, modulations, and data characteristics and
dimensions, we focus on single-chip radars. In this cate-
gory, prior datasets generally use TI single-chip radars such
as the TI AWR1843 family which we use [59].

Fine-Tuning Experiment In our fine-tuning experi-
ments, we elected to use the Coloradar [23] dataset due to

its inclusion of high-quality Lidar depth data and extensive
prior work using this dataset. We considered, but opted not
to use, the following datasets:
• RaDICal [29]: the depth cameras used have poor perfor-

mance, especially beyond very close ranges. Likely be-
cause of this issue, we are also not aware of a substantial
body of prior work using this dataset as a benchmark.

• RADDet [69]: RADDet is an extremely popular object
detection dataset, and a good candidate for fine-tuning.
Unfortunately, while we have been able to obtain the raw
ADC data, the ground truth labels, video, and other meta-
data are no longer available as of time of writing.

• CRUW [63]: While the original CRUW dataset appears
to include lower-level data, only 2D range-azimuth maps
are publicly available.

A.4. Dataset Details
Our dataset was collected on and around the CMU campus
and in the Pittsburgh area, and includes three data settings:
handheld indoors, handheld outdoors, and on a bike. In ad-
dition to maps of data collection areas (Fig. 13), we also
provide representative samples from each dataset (Fig. 14).

indoor: The indoor setting was collected from publicly
accessible areas within the CMU campus. Each trace gener-
ally represents a different floor (or multiple floors, in cases
where each floor is relatively small). Additionally, each
floor was covered twice: once in a forward-facing config-
uration (with the velocity mostly aligned with the radar’s
orientation), and once in a “sideways facing” configuration
(with the velocity mostly orthogonal to the radar).

outdoor: Roughly 30-minute-long traces were collected
within contiguous areas with minimal overlap, with the
radar generally facing forward. The areas visited include
CMU and Pitt university campuses, commercial areas rang-
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(a) Buildings visited in the indoor split. (b) Areas covered by traces in the outdoor split.

(c) Traces in the bike split. (d) Overview of the data collection extents for each setting.

Figure 13. Maps of the train (blue) and test (orange) splits for each setting.

ing from medium to high density, and residential areas
ranging from single-family detached to high rise apartment
buildings, as well as a variety of streets ranging from small
alleys to busy “stroads.”

bike: Data was collected on approximately 60-minute-
long round-trips6 originating from our lab; each trace is split
into an inbound and outbound leg covering mostly the same
path, but in different directions. Note that there is some
overlap between the areas covered in the train and test splits
at “bottlenecks” near the CMU campus; when viewed as a
whole, we believe this is negligible.

6As one the authors was struck by a vehicle while collecting data on
bike, we urge any efforts to replicate or extend this split to minimize mental
load during data collection and use caution when planning routes. Thank-
fully, the author was uninjured, though the radar was destroyed.

B. Method Details

GRT uses a standard encoder-decoder transformer network
(App. B.1). We also document our data augmentations
(App. B.2), training tasks (App. B.3), evaluation procedure
(App. B.4), and baselines (App. B.5).

B.1. GRT Training & Hyperparameters
GRT uses a standard transformer architecture with sinu-
soidal positional encodings, and experimentally obtained
radar-specific patching parameters. For a summary of key
hyperparameters and architecture parameters, see Table 9.

Architecture Unless specified otherwise, GRT’s architec-
ture uses the following common parameters:
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Figure 14. Representative samples from our dataset showing camera and range-Doppler frames from the indoor (top), outdoor
(middle), and bike (bottom) settings. Each radar plot shows the range-Doppler image of a single (azimuth, elevation) bin. When the
radar is configured with a range and Doppler resolution which is appropriate for each setting, the resulting range-Doppler frames are
remarkably similar at a visual level. Note that common types of radar noise and artifacts such as a zero doppler artifact (the straight line at
the center of each frame) and range-Doppler bleed (horizontal and vertical lines coming from bright reflectors) are clearly visible in these
examples.
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Table 9. Key Hyperparameters for GRT. Except for model lay-
ers and dimensionality, which we perform scaling law ablations
on, these hyperparameters are taken from common transformer de-
sign practices as of time of writing.

Input Patch Size 128 (4× 2× 8× 2)
Input Number of Patches 2048

Output Number of Patches 1024
Layers 4 – 18

Model Dimension 256 – 768
Dimensions Per Head 64

Expansion Ratio 4.0
Transformer Norm “pre-norm”

Activation GeLU
Dropout 0.1

Batch Size 32
Optimizer AdamW
Warmup 100 Steps

Learning Rate 10−4

• We always use a simple linear patch and unpatch layers,
with the appropriate output dimensionality depending on
the task.

• All layers use a GeLU activation [16].
• Transformers use “pre-norm” (norm before, instead of af-

ter the transformer layer), which is generally regarded as
more stable [65]; when using “post-norm” (as in the origi-
nal transformer architecture [61]), we find that GRT often
diverges due to numerical instability at initialization.

• Each transformer layer has a fixed expansion ratio of 4.0
and a dropout of 0.1.

Positional Encodings In both encoder and decoder posi-
tional embeddings, we use a simple N-dimensional encod-
ing which divides the number of features equally between
each dimension and independently applies a sinusoidal en-
coding for the coordinate in that axis. To facilitate fine-
tuning for tasks with different output resolutions, we also
normalize the frequencies by the total length of each axis so
that different resolutions result in the same frequency range.

Training When training GRT, we use the following pa-
rameters for all models:
• We apply a range of data augmentations, which we find

to provide a ≈ 5% benefit (App. B.2).
• We always use a fixed batch size of 32. When training

on platforms with different GPU counts, the batch is split
equally between each GPU.

• All models are trained with a learning rate of 10−4 using
the AdamW [31] optimizer with a warmup period of 100
steps. We find this warmup period to be essential in order
to avoid initialization instability and NaN gradients.

• Each model was trained until the validation loss stopped

decreasing, as defined by three consecutive checkpoints
without a decrease in validation loss, with two check-
points taken each epoch.

Fine-Tuning Fine-tuning uses the same procedure as for
training, including termination after the validation loss
stops decreasing. The model is not frozen, with all weights
being trainable during the tuning process. In cases where
the output dimension does not match the input dimension
(e.g., 8-channel one-hot classification outputs for the Se-
mantic Segmentation objective vs. 1-channel binary classi-
fication outputs for occupancy objectives), the output layer
is also re-initialized.

Patch Size We use a patch size of 128 bins (4 range, 2
Doppler, 8 azimuth, 2 elevation) in the encoder, resulting in
2048 input patches, and square (or cubic) patches for each
output sized to maintain a fixed decoder sequence length of
1024 patches. Note that this “patches out” the azimuth and
elevation axes in the encoder; while we empirically deter-
mined that this leads to the best performance on our dataset
(Sec. 5.1), we expect the optimal patch dimensions to vary
depending on the input radar resolution.

Patch Size Alternatives In addition to the above patch
size, we tested the following alternatives:
• Range-Doppler-azimuth-elevation: carefully selecting

our patch size to keep all four axes, we create 16 range
× 8 Doppler × 8 azimuth × 2 elevation patches. This
results in a 4.18± 1.09% increase in test loss.

• Range-azimuth-elevation: we eliminate the Doppler
axis for 128 Range × 8 azimuth × 2 elevation patches.
This results in a 6.27± 1.10% increase in test loss.

• Doppler-azimuth-elevation: we eliminate the Range
axis (as much as possible) to obtain 64 Doppler × 2 range
× 8 azimuth × 2 elevation patches. This results in a
6.22± 1.11% increase in test loss.

B.2. Data Augmentations
We develop a range of data augmentations, which we ab-
late in two groups: Scale, Phase, and Flip Only, and Full
augmentations, which we use by default.

Scale, Phase, and Flip Only This group includes “sim-
ple” augmentations which can be calculated pixel-wise:
• radar scale: random scaling applied to the magni-

tude of the 4D radar data cube, with log-normal distribu-
tion exp(N (0, 0.22)) clipped to [exp(−2), exp(2)].

• radar phase: random phase offset of Unif(−π, π) ap-
plied to the phase of the 4D radar data cube (except in
ablations where no phase information is provided to the
model).
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• azimuth flip: random flipping (with probability 0.5)
along the azimuth axis, i.e., swapping left and right. Note
that this augmentation also affects the ground truth for
each task.

• doppler flip: random flipping (with probability 0.5)
along the Doppler axis, i.e. swapping positive and nega-
tive Doppler. This is equivalent to reversing the direction
of travel of the sensor and all other objects in the scene;
as such, this augmentation also affects the ground truth
velocity by reversing the velocity vector.

Note that we do not apply an elevation flip since the
ground is always down!

Full In addition to the above augmentations, we include
augmentations which are equivalent to random cropping:
• range scale: ranges are multiplied by a

Unif(1.0, 2.0) scale, with the radar data cube being
cropped and scaled appropriately using a bilinear inter-
polation. The ground truth occupancy and Bird’s Eye
View are also scaled accordingly.

• speed scale: Doppler velocities are multiplied by
a log-normal exp(N (0, 0.22)) distribution, clipped to
[exp(−2), exp(2)]. All scaling is done with bilinear inter-
polation. If the velocity is scaled down, we zero-fill any
extra bins; if velocity is scaled up, we “wrap” the Doppler
velocity around to emulate the ambiguity of Doppler ve-
locity modulo the Doppler bandwidth. Finally, the ground
truth ego-motion velocity is scaled to match.

B.3. Task Details
3D Occupancy Classification Our 3D polar occupancy
task uses a binary cross-entropy loss on polar grid cells
which are created by the product set of the radar’s range
resolution with the Lidar’s azimuth and elevation resolution.
The loss is further scaled and balanced for the following:
• To facilitate joint training between different radar modu-

lation, we normalize distances by the radar range resolu-
tion, resulting in a fixed output grid for each setting.

• To correct for the sparsity of 3D occupancy grids, oc-
cupied cells are weighted greater (64.0) than unoccupied
cells (1.0).

• Since polar occupancy cells are larger when further away,
we correct for the cell size, which is proportional to r2.

Finally, to manage the memory required by dense 3D pre-
diction, we apply a 4× range, 8× azimuth, and 2× elevation
decimation, resulting in (64 range × 128 azimuth × 64 ele-
vation) bins, which we output with 1024 (8×8×8) patches.
For decimated range-azimuth-elevation grid r, θ, ϕ and 0-1
occupancy Y ∗, this corresponds to the following loss:

L(Ŷr,ϕ,θ, Y
∗
r,ϕ,θ)

= r2(1.0 + 63.0Y ∗
r,ϕ,θ)BCE(Ŷr,ϕ,θ, Y

∗
r,ϕ,θ) (1)

In addition to the test loss, we compute the Chamfer dis-
tance (by treating each occupied cell as a point), and the
mean absolute error of depth estimates obtained by finding
the first occupied cell along the range axis of our range-
azimuth-elevation occupancy.

Bird’s Eye View (BEV) Occupancy We use the same bi-
nary cross-entropy and Dice loss mixture as [45], and out-
put a 256×1024 range-azimuth polar occupancy grid which
corresponds to the native range resolution of the radar and
the native azimuth of the Lidar, restricted to forward-facing
bins. We output 1024 (16× 16) patches.

In addition to the test loss, we also compute the Chamfer
distance, using the same procedure as for 3D occupancy.

Semantic Segmentation We use the 640 × 640 output
of segformer-b5 [64], trained on ADE20k [71], as the
ground truth for this task. We aggregate the ADE20k
classes into eight broad categories (arranged by index):
0. ceiling: any structure viewed from below; mostly

seen indoors.
1. flat: flat, walkable surfaces such as sidewalks and

roads. Grass and other vegetation are excluded, and in-
cluded in nature instead.

2. nature: vegetation and other natural items such as
grass, shrubs, trees, and water.

3. object: miscellaneous small objects such as furniture
which are not included in the structure category.

4. person: any person who is not inside a vehicle or rid-
ing a vehicle.

5. sky: the sky.
6. structure: large man-made items such as buildings,

fences, and shelters.
7. vehicle: cars, trucks, buses, and other vehicles.
We output 1024 (5×5)×8 patches and train using a simple
binary cross-entropy loss. Finally, in addition to the test
loss, we also calculate the mIOU (mean intersection over
union), accuracy, and top-2 accuracy.

Ego-Motion Estimation We fuse our IMU and Lidar data
Cartographer SLAM [17], which we project back to the sen-
sor’s frame of reference to obtain Ego-Motion ground truth,
and manually exclude regions where SLAM failed (typi-
cally due to a lack of Lidar features, e.g. bridges or tunnels,
totaling ≈ 1% of our dataset).

During training, we first normalize the velocity with re-
spect to the Doppler resolution (i.e. measuring each com-
ponent in Doppler bins); then, we use the l2 loss

LEgo-Motion = ||v̂ − v∗||2 ≈
√

(v̂ − v∗)T (v̂ − v∗) + ε (2)

where ε = 1.0 Doppler bins (with a typical magnitude of
16 ≤ ||v∗||2 ≤ 32) is included for numerical stability.
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Figure 15. Width of 95% confidence intervals, in percent, relative
to the baseline of each ablation, aggregated and plotted as a his-
togram. Using our 4.5 hour (163k frame) test split, we are able
to compare methods with a median confidence interval width of
2.6% (one-sided difference of 1.3%), with the exact width varying
depending on the variance of the underlying comparison.

B.4. Evaluation Procedure
Following our evaluation procedure, we can measure differ-
ences of 1-2% with high probability (Fig. 15); we provide
details about this procedure below.

Geo-Split Within each setting, ≈1.5 hours of data are re-
served as a test set. In order to control data leakage, we split
traces for each setting along natural geographic boundaries:
• indoor: since buildings can have duplicated floor plates

and other design features between floors or different ar-
eas, data was split by building, with the evaluation set
consisting of all traces collected from 3 buildings.

• outdoor: each trace was collected as a contiguous area
on foot; we reserved a set area within a neighborhood that
includes various zoning and street types for the test set.

• bike: each trace was collected as a round-trip ride from
a set origin; two rides from a set range of directions were
reserved for the test set.

Sample Size Correction Intuitively, sampling the same
signal – such as radar-lidar-video frames – with a greater
frequency yields diminishing “information”. Since the stan-
dard error of the mean, SE = std(X)/

√
N , is defined for

N independent and identically distributed samples, we must
correct for the effective sample size of our test data.

In our analysis, we assuming that changes in model per-
formance imply changes in the underlying data (but not nec-
essarily the converse). This allows us to estimate a lower
bound on the effective sample size from each scalar perfor-
mance metric as [51]

Neff =
N

1 + 2
∑∞

t=1 ρt
(3)

for autocorrelation ρt (where t is the delay). Similar to [18],

we approximate the infinite series up to t = N/2 and clip
negative empirical autocorrelation values ρ̂t < 0 to 0.

Paired z-Test The actual values of each measured metric
have a large inherent variance due to the varying difficulty
of the data (e.g., the presence of clutter, dynamics, or other
challenging features). As such, the standard error of ab-
solute values of each metric is large. Taking advantage of
the fact that each model is evaluated on identical test traces
with respect to a baseline, and that the performance of each
model is highly correlated with its baseline, we instead use
a paired z-test, i.e., on the relative values of each metric,
which mitigates the impact of this variance.

B.5. Baseline Details

Ideally, we would like to compare GRT against off-the-
shelf baselines without any modifications. However, due
to the lack of standardization in radar hardware and mod-
ulations, radar data cubes do not have standard dimen-
sions and aspect ratios; furthermore, since radar data cubes
are generally tightly coupled with physical effects arising
from hardware and modulation design choices, dimension-
normalizing transforms such as cropping and resizing are
also not generally valid.

While transformer encoder-decoder architectures can be
readily adapted for different input and output dimensions by
simply changing the input and output context size (and po-
sitional encodings), convolutional and encoder-only archi-
tectures must be modified to fit different input and output
resolutions. Thus, to run prior baselines on our dataset, we
made the a few changes to each baseline.

RadarHD RadarHD [45] uses an asymmetric U-net with
azimuth-only 2× upsampling layers to meet the target out-
put resolution, relative to the input. Since RadarHD was
originally designed for 512 output azimuth bins instead of
the 1024 output azimuth bins in our dataset, we include an
additional azimuth upsampling layer, with other layers and
dimensions staying the same.

T-FFTRadNet T-FFTRadNet [15] uses a swin trans-
former encoder with a relatively lightweight convolutional
decoder, with some U-net-like skip connections. Since
T-FFTRadNet’s “dense” high-resolution decoder was de-
signed only for cascaded imaging radars, and the decoder
for single-chip radar was designed only for sparse outputs,
we modified the dense decoder to use the output of the back-
bone for single-chip radar by increasing the bilinear upsam-
pling size to 4× in both range and azimuth. Other layers
and dimensions are kept the same.
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Figure 16. Select frames from our test set. Frames are annotated with notable features. Note that the field of view is narrower for the
camera (≈ 60◦ × 120◦) compared to the Lidar (90◦ × 180◦).

C. Additional Results
In this section, we provide sample visualizations (App. C.1)
and additional analyses (App. C.2-C.4). Note that in addi-
tion to the included figures, video examples of our model in
action can be found at our project site.

C.1. Sample Images
To better visualize the capabilities of our model, we pro-
vide a range of sample results (Fig. 16), including some
cases where our model performs better than expected, fail-
ure cases which illustrate the limitations of our approach,
and a representative random sample (Fig. 17).

Surprising Capabilities While others have tried
mmWave-radar-based semantic segmentation [24], no

prior works attempt to extract high-resolution elevation
information for tasks such as semantic segmentation or 3D
occupancy classification on such a low-resolution radar. As
such, we found it surprising that our model works at all! In
our evaluation traces, we also found additional capabilities
which further exceeded our expectations:

• Material Properties: Despite our radar’s low resolution,
it is able to correctly label pavement and grass in many
cases (Fig. 16, A), likely learning the fact that paved sur-
faces generally have specular returns, while natural sur-
faces have diffuse returns.

• Pedestrians: the model is able to correctly identify
pedestrians in many cases, likely due to the unique micro-
doppler signature of people walking (Fig. 16, B-C).

Finally, it is worth noting that a radar using GRT’s segmen-
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Camera Image Segmentation GRT Segmentation Lidar Depth GRT Depth Lidar BEV GRT BEV

Camera Image Segmentation GRT Segmentation Lidar Depth GRT Depth Lidar BEV GRT BEV

Figure 17. A random sample of 15 images from the test split of I/Q-1M. 5 samples are taken from the indoor (top), outdoor
(middle), and bike (bottom) settings. All images are generated by GRT-small; the segmentation (left) and BEV (right) outputs are
trained and fine-tuned on the full dataset, while the depth output (center) is rendered from the base model’s 3D occupancy output.
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Table 10. Performance metrics (App. B.3) of the GRT-small transformer model trained on our base task (3D Occupancy) and fine-tuned
on each secondary task with our full dataset (mean with 95% confidence intervals).

Task Metric Average Indoor Outdoor Bike

3D Occupancy Chamfer 4.7 bins ± 0.19 0.24 m ± 0.02 0.4 m ± 0.019 0.38 m ± 0.023
Depth 16 bins ± 0.66 0.62 m ± 0.059 1.5 m ± 0.09 1.4 m ± 0.089

Semantic Segmentation mIOU 0.69± 0.012 0.78± 0.02 0.63± 0.019 0.69± 0.018
Accuracy 0.79± 0.0097 0.85± 0.016 0.75± 0.016 0.78± 0.016

Top-2 Accuracy 0.94± 0.0053 0.97± 0.006 0.92± 0.01 0.93± 0.011
BEV Classification Chamfer 11 bins ± 0.91 0.28 m ± 0.027 0.84 m ± 0.13 1.3 m ± 0.19

Ego-Motion Estimation Speed 0.95 bins ± 0.093 0.025 m/s ± 0.0022 0.025 m/s ± 0.0024 0.091 m/s ± 0.047
Angle 4.2◦ ± 0.46 5.9◦ ± 0.54 5◦ ± 0.61 1.9◦ ± 1.3
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Figure 18. Scaling laws for the depth mean absolute error (top) and chamfer distance (bottom) metrics, measured in radar range bins
(4.4cm indoor, 8.7cm outdoor, bike).

tation capability can operate in conditions when cameras
cannot such as fog, smoke, and darkness.

Failure Cases To highlight a few failure cases for GRT:
• Fine-Grained Classification: using only a low-

resolution radar without any visual or Lidar inputs, a
pure radar transformer has no way of differentiating fine-
grained classes such as metal dumpsters (in the object
class) from the vehicle class (Fig. 16, D).

• Static People: without the unique micro-doppler signa-
ture associated with walking, our model often fails to de-
tect people who are standing or sitting still (Fig. 16, E).

• Limited Vertical Resolution: the vertical field of view
of our radar is relatively limited, with a 6dB-beamwidth
of ±20°. Thus, even with Doppler information to help re-

solve elevation information (beyond the 2 elevation bins
measured by our radar), the model cannot reliably esti-
mate regions at the edge of the Lidar or Camera’s vertical
field of view (Fig. 16, F).

• Clutter: when a scene is very cluttered, GRT can fail
to resolve individual objects; this generally leads to large
hallucinations (Fig. 16, B, G).

C.2. Absolute Metrics
Since each task has a number of possible metrics (which are
not always aligned), we generally report metrics as relative
test losses to best capture the performance of the model in
its ability to fit the target loss.

Key Metrics As an absolute reference, we calculated a
range of common performance metrics for each objective

11
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Figure 19. Sample sequences of three consecutive frames before (top) and after (bottom) stopping at a red light. Video frames are
provided for reference (left), with GRT’s semantic segmentation (center left) and depth (center right) outputs across the two sequences along
with the range-Doppler spectrum. After stopping, the Doppler spectrum (horizontal axis; right) collapses to a single Doppler bin, resulting
in significantly decreased information available to the model. This manifests as noisier (as seen by larger frame-to-frame variations and
hallucinations) and less accurate predictions by the model.

(Table 10) as described previously (App. B.3). For these
metrics, SI units are reported where applicable; distance
and speed metrics are normalized by range and Doppler res-
olutions, respectively, when aggregating over settings with
different radar configurations.

Absolute Scaling Laws As an alternate version to Fig. 6,
we also measured scaling laws with respect to the depth
and chamfer metrics (Fig. 18); while somewhat noisier, the
same general trend can be seen. Note that this noise is also
why we compare loss metrics in our scaling laws and ab-

lations since it serves as a more direct measure of relative
“learning” performance.

C.3. Impact of Doppler

To further illustrate the impact of Doppler, we measured
the test loss of our objectives (other than Ego-Motion esti-
mation), binned against the sensor speed (Fig. 20). When
the sensor’s speed is low relative to its maximum Doppler,
it captures less Doppler information due to our radar’s fixed
Doppler resolution, leading to degraded performance. This
can also be seen qualitatively: when the data capture rig
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Figure 20. Relative test losses binned by the speed of the data
collection rig (20 equal 5% bins) on the bike subset; due to less
available Doppler information, lower speeds are associated with
higher losses for each of our tasks.

stops, the GRT model’s predictions become noisier, less
sharp, and tend to show blocky artifacts aligned with the
output patch size (Fig. 19).

C.4. Scaling Law Projections
To motivate future work scaling data collection and training
for single-chip radar models using 4D data cubes, we run
a suite of scaling law experiments to obtain rough, order-
of-magnitude estimates for the data requirements of “fully”
training GRT foundational model (Sec. 5.4) of a similar size
to the relatively small (by vision standards) models which
we trained. In this section, we describe additional details
and assumptions behind our two methods of estimation.

Extending the Scaling Law In order to estimate data re-
quirements from our scaling law, we start from the assump-
tion that data scaling will always be at most logarithmic.
This is based on the intuition that increasing the size of the
dataset will always have diminishing returns (in turn at a
diminishing rate), which is consistently observed in other
scaling experiments [68].

We then train a network only on the test set, without any
augmentations; we reason that this provides a lower bound
on the achievable test loss (due to random, unpredictable
noise in the dataset) for a given architecture, given that the
model is not large enough to memorize the test set pixel-
for-pixel. Note that this also provides an improvement over
a naive lower bound from the fact that L > 0.

Combining these two implies that data scaling can be
logarithmic for increasing dataset size up to at most 100×
our current dataset size, which we believe represents a rea-
sonable order-of-magnitude estimate for the data require-
ments for a “fully trained” radar foundational model.

Training Curve Patterns In our experiments, we observe
that all models tend to stop improving with respect to val-
idation loss after approximately 10 epochs (Fig. 21). This
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Figure 21. Validation loss improvement per epoch, measured ev-
ery checkpoint (2 checkpoints/epoch), and smoothed with a 5-
checkpoint median filter. Each line refers to a different model
(with different sizes); models are separated by dataset size. Our
models consistently tend to stop improving (in validation loss) af-
ter around 10 epochs of training.

gives a further avenue for projections: assuming that the
informational “value” of a radar frame is roughly equiva-
lent to an image, we can take rough numbers for the typical
number of samples seen used to train a vision transformer
and translate this to data requirements for a radar founda-
tional model.

Note that this assumption of informational equivalence is
also quite rough. Unlike vision transformers, which are typ-
ically trained on independent images scraped from the inter-
net, GRT is trained using dependent frames sampled from a
time-series of sensor data, decreasing the relative informa-
tion density of radar time-series data. On the other hand,
while vision transformers typically use sparse feedback sig-
nals such as image-caption [47] or image-label [68] pairs,
GRT is trained using dense feedback in the form of a 3D oc-
cupancy grid (App. B.3). In principle, this increases the rel-
ative information density of radar-Lidar training pairs. Our
projection therefore assumes that these factors roughly bal-
ance out within an order of magnitude.
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