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ABSTRACT
In this paper, we ask, “Canmillimeter-wave (mmWave) radars

sense objects not directly illuminated by the radar – for

instance, objects located outside the transmit beamwidth,

behind occlusions, or placed fully behind the radar?" Tradi-

tionally, mmWave radars are limited to sense objects that

are directly illuminated by the radar and scatter its signals

directly back. In practice, however, radar signals scatter to

other intermediate objects in the environment and undergo

multiple bounces before being received back at the radar. In

this paper, we present Hydra, a framework to explicitlymodel

and exploit multi-bounce paths for sensing. Hydra enables
standalone mmWave radars to sense beyond-field-of-view

objects without prior knowledge of the environment. We

extensively evaluate the localization performance of Hydra
with an off-the-shelf mmWave radar in five different environ-

ments with everyday objects. Exploiting multi-bounce via

Hydra provides 2×-10× improvement in the median beyond-

field-of-view localization error over baselines.

CCS CONCEPTS
• Hardware→ Digital signal processing; Sensor appli-
cations and deployments; • Computer systems organi-
zation → Sensor networks.
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Figure 1: Hydra utilizes multi-bounce scattering for
mmWave sensing of objects that are otherwise not de-
tected by conventional single-bounce sensingmethods.
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1 INTRODUCTION
Millimeter-wave (mmWave) radars are an emerging sens-

ing modality being used in various applications such as au-

tonomous driving [13, 36], security [30, 37], non-destructive

evaluation [31, 33], spatial computing [23], indoor naviga-

tion [26], and beyond. Their larger bandwidths enable better

ranging accuracy, and their unique depth penetration abili-

ties enable sensing through visible light occlusions, such as

fog [13] and smoke [26], as well as in the dark [30].

However, traditional radar processing is limited to sense

objects that are directly illuminated by the radar and that scat-

ter radar illumination directly back. We call such methods
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single-bounce sensing, and a large class of the literature [13–

15, 26, 32, 34, 48, 51–53] falls under this category. In practice,

however, a large fraction of incident illumination is scattered

to other intermediate objects in the environment, and radar

signals undergo multiple bounces before being received back

at the radar. This leads us to ask, “Is it possible to exploit

such multi-bounce scattering paths to sense objects that are

not directly illuminated by the radar?"

In this paper, we propose Hydra1, a novel framework that

exploits multi-bounce scattering to enable mmWave sens-

ing of objects that are not directly illuminated by the radar,

and hence not are detected by conventional single-bounce

methods. An example scenario is depicted in Fig. 1, where

only the sofa is directly illuminated by the radar and hence is

detected via single-bounce, but all other objects (dining fur-

niture, trashcan and behind-radar human) are not detected.

In the sequel, we refer to all objects not directly illuminated

by the radar as beyond field-of-view objects, since they lie

outside the radar’s field-of-view (FoV), i.e., transmit beam.

Sensing beyond-FoV objects, e.g., behind the radar or

around corners, is crucial in scenarios such as navigation

and traffic scheduling at intersections, intrusion detection in

smart homes, etc. Prior solutions to sense beyond-FoV objects

leverage system mobility [26, 32, 34, 45, 51, 52] and/or mul-

tiple modules - 2+ radars [42, 49] or radar + lidar [36, 46, 50]

(see Section 2 for a review of related work). Hydra is a com-

plementary solution that enables standalonemmWave radars

to sense beyond-FoV objects purely purely using computa-

tional resources at no additional cost - making Hydra attrac-

tive in scenarios where hardware size/cost is at a premium,

e.g., low form factor drones, roadside infrastructure units,

etc. Moreover, Hydra requires no prior knowledge of the

environment unlike prior beyond-FoV sensing solutions that

require knowledge of key reflectors.

There are two main challenges associated with the design

of Hydra. First, with no prior knowledge of objects in the

environment, it is unclear how the radar should transform

its measurements to spatial locations in the environment.

Second, it is well-known that the received power of multi-

bounce decays with each additional bounce [1]. Hence, de-

tecting beyond-FoV objects from the combination of single-

, double- and triple-bounce paths received at the radar is

challenging because single-bounce paths typically greatly

dominate in power over double- and triple-bounce paths.

As a key intermediate step towards solving the first chal-

lenge, we mathematically model diffuse multi-bounce scat-

tering from objects. Our modeling insights lead to a matched

filtering algorithm that directly localizes objects to their

ground-truth locations along specific multi-bounce paths.

To solve the second challenge, we perform matched filtering

1
named after the multi-headed Greek mythological monster

and object detection separately & sequentially along single-

, double- and triple-bounce. For each multi-bounce order,

object detection is performed via a custom ordered statis-

tics constant false alarm rate detector (OS-CFAR) [35], and

objects detected in lower multi-bounce orders are used as

anchors to localize objects in undetected regions of the envi-

ronment with higher-order multi-bounce. For example, in the

context of Fig. 1, the sofa is first localized via single-bounce,

and is used to subsequently localize the dining furniture via

double-bounce. The process is repeated to sense the behind-

radar human and occluded trashcan via triple-bounce paths.

We do not utilize fourth- and higher-order bounces since em-

pirically we find the power of such paths too low to exploit.

We implement Hydra on a commercial digital mmWave

multiple-input multiple-output (MIMO) radar testbed (TI

AWR2243 cascade radar [18]), and extensively evaluate its

performance in five different indoor and outdoor scenar-

ios, and exploit multi-bounce paths from a wide variety of

everyday objects and surfaces, including human bodies, in-

door furniture, and extended room and building features.

We demonstrate that even with no prior knowledge of the

environment, modeling and exploiting double-bounce and

triple-bounce paths can improve the median localization

error for human targets standing outside the radar’s field-of-

view by 2×-10× over traditional single-bounce methods.

In summary, our main contributions are as follows:

• We propose Hydra, a framework that models and ex-

ploits diffusemulti-bounce scattering to enable beyond-

field-of-view sensing with a single mmWave radar

without prior knowledge of the environment.

• We propose a sequential procedure that: (i) performs

matched filtering and target detection separately and

sequentially over different orders of multi-bounce, and

(ii) uses target detections from previous iterations as

anchors to localize objects along multiple possible

multi-bounce paths of a given order.

• Our implementation on a commercial digital mmWave

MIMO radar (TI AWR2243 cascade radar [18]) demon-

strates 2×-10× improvement in themedian localization

error for humans standing outside the radar’s field-of-

view across 5 different indoor and outdoor scenarios,

exploiting multi-bounce from a wide variety of every-

day objects and surfaces, such as human bodies, indoor

furniture, and extended room and building features.

We note that our design is limited to sensing static objects

in the range-azimuth plane, and is not fully optimized in

terms of its computational complexity. Our objective in this

paper is to experimentally demonstrate and benchmark the

underlying principles of beyond-field-of-view sensing with

standalone mmWave radars. We discuss the limitations of

our design and describe potential extensions in Section 6.
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Reference Environment

Additional Hardware Multi-Bounce Order

Knowledge Lidar Reflector Single Double Triple

[36, 46, 50] ✓ ✓ × × × ✓
[2, 39, 44] ✓ × ✓ × × ✓

[6, 12, 16, 21, 22] ✓ × × ✓ ✓ ✓
This Work × × × ✓ ✓ ✓

Table 1: Hydra exploits multi-bounce scattering to enable a single mmWave radar to sense beyond its field-of-view
without prior knowledge of the environment or additional hardware such as dedicated reflectors or lidars.

The next section summarizes related work. Section 3 de-

scribes the limitations of single-bounce sensing, which in-

form Hydra’s design in Section 4. Section 5 evaluates Hydra’s
performance across 5 different indoor and outdoor settings.

We conclude the paper in Section 7 after discussing the limi-

tations of our design and future work in Section 6.

2 RELATEDWORK
Table 1 summarizes the related work discussed below.

Single-bounce sensing: Traditional mmWave sensing al-

gorithms only model single-bounce reflections from the en-

vironment [13–15, 26, 32, 34, 48, 51–53]. However, mmWave

signal directionality limits the single-bounce FoV to non-

occluded objects within the transmit beam. Existing solutions

sense in a wider FoV via: (i) beam scanning [11, 14, 15, 53], (ii)

multiple radars to span the entire 360
◦
FoV around the sys-

tem [42, 49], or (iii) system rotation and mobility [26, 32, 34,

45, 51, 52]. Hydra complements these methods by enabling

standalone mmWave radars to sense beyond-FoV objects

without additional hardware, even when the radar is static.

Around-corner sensing: There exists rich literature on

around-corner radar sensing [2, 36, 39, 44, 46, 50], inspired

from similar ideas in visible light and acoustic imaging [9,

24, 25, 41]. However, the scenarios considered only con-

sist of triple-bounce paths. Traditional around-corner ap-

proaches process the triple-bounce data with single-bounce

algorithms, resulting in “ghosts” (mirror images) of objects

about reflectors in the environment (walls, etc.). Subsequently,

prior knowledge of the environment – via dedicated reflec-

tors [2, 39, 44] or lidar-based environment mapping [36,

46, 50] – is used to “remap” the ghosts to their ground-

truth locations. However, such approaches are environment-

specific and increase the overall hardware complexity and

cost. Hydra explores the general problem of beyond-FoV

sensing with a single mmWave radar via double-bounce and

triple-bounce paths without prior environment knowledge.

Multi-bounce exploitation: The general problem of sens-

ing with arbitrarymulti-bounce has been considered in [6, 10,

12, 16, 20–22, 27, 28]. Similar to around-corner sensing, the

common approach is to use single-bounce sensing models,

resulting in the formation of multipath “ghosts”, which must

first be identified, e.g., via range-Doppler characteristics [10],

and subsequently suppressed [6, 10, 21] or remapped to their

ground-truth locations [5, 12, 20]. By modeling multi-bounce

scattering, Hydra avoids the need for “ghost” identification

and suppression/remapping.

Channel estimation & localization: Our work is also

broadly related toWiFi/mmWave channel estimation [19, 45],

which is used to localize devices [4, 7, 22, 40, 43]. The major

differences of [4, 7, 19, 22, 40, 43, 45] with Hydra are: (i) they
localize RF-enabled radios or RFID tags whereas Hydra local-
izes non-RF enabled objects, (ii) they are limited to exploiting

single-bounce paths that bounce once in the environment,

whereas Hydra uses 𝑛-bounce scattering, for 𝑛 ≥ 1.

Programmable surfaces to aid sensing: Finally, recent
work [3, 29, 47] explores deploying programmable surfaces
to improve sensing performance. Since Hydra focuses on ex-

ploiting natural multi-bounce in the environment, such sys-

tems are beyond the scope of this present work but present

an interesting exploration space for future work.

3 SINGLE-BOUNCE FOV LIMITATIONS
We begin by modeling single-bounce sensing with MIMO

radars, and show that the single-bounce field-of-view is in-

herently limited to the transmit beampattern of the system.

The FoV limitations of single-bounce are subsequently used

to inform the multi-bounce design of Hydra in Section 4.

3.1 MIMO Radar System Model
Consider a digital mmWave MIMO radar equipped with T
transmit and R receive elements. The radar remains static,

transmit beamforms in a fixed direction with T × 1 transmit

beamforming weights wTX , and captures reflections from

the surrounding static environment. For simplicity, we only

model the range and azimuth angles, and not elevation.

The time-domain transmitted signals can be written as a

T × 1 vector, x(𝑡) = wTX𝑥 (𝑡), for a complex scalar transmit

waveform 𝑥 (𝑡). The R × 1 vector of time-domain received

signals is given by the sum of attenuated and delayed copies

of x(𝑡) along different paths ℓ , weighted by T × 1 transmit
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Figure 2: Experiment to evaluate sensing FoV with single-bounce. (a) Setup. (b)-(d): Normalized single-bounce
reflectivity magnitudes from (4) show that single-bounce FoV is limited to main- and side-lobes of transmit array.

and R × 1 receive steering vectors, aTX (𝜃 ℓTX ) and aRX (𝜃 ℓRX ),
corresponding to each path’s angle-of-departure and arrival,

y(𝑡) =
∑︁
ℓ

𝛼ℓaRX (𝜃 ℓRX )a
⊤
TX
(𝜃 ℓ

TX
)wTX𝑥 (𝑡 − 𝜏ℓ ), (1)

where 𝛼ℓ and 𝜏ℓ model attenuation and time delay of path ℓ ,

(·)⊤ denotes transpose, and we have ignored noise and the

frequency dependence of the steering vectors.

Consider single-bounce paths of the form: radar → p →
radar, for locations p ∈ R2 in the environment. The angles-of-

departure and arrival are equal for such paths, i.e.,𝜃 ℓ
TX
= 𝜃 ℓ

RX
=

𝜃p, where 𝜃p denotes the azimuth angle of p with respect to

the radar (assumed at origin). The time delay corresponds

to the round-trip delay to location p, i.e., 𝜏ℓ =
2∥p∥2

c , for

speed of light c. Furthermore, 𝛼ℓ = 𝜎p is the path attenuation

due to the combined effect of the reflectivity and path loss

to-and-from p. Hence, (1) for single-bounce paths is

ySB (𝑡) =
∑︁

p
𝜎paRX (𝜃p)a⊤TX (𝜃p)wTX𝑥

(
𝑡 − 2∥p∥2

c

)
. (2)

3.2 Single-Bounce Sensing Pipeline
The goal of sensing is to estimate reflectivities 𝜎p given the

measurements ySB (𝑡) and transmit signal 𝑥 (𝑡) (known to the

radar); non-zero magnitudes of 𝜎p indicate presence of an

object at location p. After matched filtering with 𝑥 (𝑡), the
system model may be expressed in the frequency domain as

ỹSB (𝜔) =
∑︁

p
𝜎paRX (𝜃p)a⊤TX (𝜃p)wTX𝑒

− 𝑗𝜔
2∥p∥

2

c . (3)

A common approach to estimate 𝜎p from ỹSB (𝜔) in (3) is

via adjoint inversion (also called back-projection) [8, 38],

𝜎̂p =
1

W

∑︁
𝜔

(
a⊤
TX
(𝜃p)wTX

)∗
𝑒 𝑗𝜔

2∥p∥
2

c aH
RX
(𝜃p)ỹSB (𝜔), (4)

where (·)∗ and (·)H denote the complex conjugate and Her-

mitian operations, and W is the total number of frequencies

considered. The estimator in (4) has a simple interpretation:

receive beamform to locations p (via aH
RX
(𝜃p)ỹSB (𝜔)), followed

by matched filtering to kernel a⊤
TX
(𝜃p)wTX𝑒

− 𝑗𝜔
2∥p∥

2

c , which is

known since a co-located receiver knows the transmit beam-

former wTX and distances ∥p∥2 to locations p.

3.3 Single-Bounce Limits Sensing FoV
We now theoretically and experimentally demonstrate that

the sensing FoV with single-bounce-only processing is lim-

ited to the main- and side-lobes of the transmit array. To

that end, note that as per (2), single-bounce scattering from

a location p is non-zero if the following condition holds:

∥aRX (𝜃p)a⊤TX (𝜃p)wTX ∥2 > 0. (5)

Assuming the receive array steering vector aRX (𝜃p) has
unit-norm, (5) simplifies to |a⊤

TX
(𝜃p)wTX | > 0, where | · | indi-

cates magnitude. The condition holds for all locations within

the main- and side-lobes of the radar’s transmit beampattern.

We illustrate the above concept via a simple range-azimuth

domain simulation and experimentwith a TImmWaveMIMO

radar [18], with 9- and 16-element transmit and receive uni-

form linear arrays (per-element spacing: 2𝜆 (transmit), 0.5𝜆

(receive), for wavelength 𝜆). The simulated and experimental

setup is shown in Fig. 2(a). We configure the radar to transmit

beamform towards an azimuth angle 𝜃 ∈ [−30◦, +30◦], hence
wTX = aTX (𝜃 ). For each transmit angle, we capture reflections

for different azimuth angle locations 𝜙 ∈ [−80◦, +80◦] of a
metallic cylinder

2
at 2.5 m range in front of the radar. Subse-

quently, the magnitude of the reflectivity estimate 𝜎̂p(𝜙 ) at
the cylinder’s ground-truth location p(𝜙) is visualized across
all combinations of (𝜙, 𝜃 ) as a 2D matrix. Each element of

the matrix (derivation in Appendix A) corresponds to:

|𝜎̂p(𝜙 ) | = |𝜎p(𝜙 ) | |a⊤TX (𝜙)aTX (𝜃 ) |2, (6)

i.e., squared left-hand side of (5) with 𝜃p = 𝜙 , wTX = aTX (𝜃 ),
scaled by the ground-truth cylinder reflectivity |𝜎p(𝜙 ) |.

2
acts as a highly reflective omnidirectional (diffuse) scatterer



Multi-Bounce Scattering for Beyond-Field-of-View mmWave Radar ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA

Data Acquisition

Radar Data Cube
# RX x samples x chirps

Multi-Bounce Processing

nth-Bounce 
Adjoint Inversion

CFAR 
Detector

Detections Sn 
All: S1 x … x Sn

n ← (n+1) Sensing Outputs
TX Beam Pattern Stopping 

Criteria

Figure 3: System overview of Hydra.
Figs. 2(b)-(c) show the simulated and experimental ma-

trices, with each row normalized to its maximum value to

remove the scaling factor |𝜎p(𝜙 ) |. We observe that matrix en-

tries have a high magnitude roughly when 𝜙 = 𝜃 ±𝑚 × 30
◦
,

for any positive integer𝑚, which correspond to the main-

and side-lobes of the transmit beampattern, also shown in

Fig. 2(d) for𝜃 = 0
◦
. Note that the side-lobes arise due to the 2𝜆

spacing at the transmit array. The good match between the-

ory and experiment validates our claim that single-bounce

limits the sensing FoV to the system’s transmit beampattern.

4 SYSTEM DESIGN: HYDRA
With the understanding that single-bounce limits the sensing

FoV, we design Hydra to enable a single mmWave radar to

sense beyond its single-bounce FoV via natural multi-bounce

scattering, without prior knowledge of the environment.

The design of Hydra consists of two main components.

First, we mathematically model diffuse multi-bounce scat-

tering, which provides the basis for multi-bounce spatial

domain matched filtering to localize beyond-FoV objects.

Second, we design a sequential detection and localiza-

tion pipeline that (i) separately detects objects along single-,

double- and triple-bounce paths, and (ii) then uses prior de-

tections as anchors to localize objects using multi-bounce

despite their weaker power. We note that no prior environ-

ment knowledge is assumed in any of the steps.

Hydra’s overall algorithmic flow is depicted in Fig. 3.

4.1 Modeling Multi-Bounce Paths
We begin by extending (1) and (2) to model multi-bounce.

Consider double-bounce paths of the form: radar → p →
p′ → radar, for pairs of locations p ≠ p′ ∈ R2 in the envi-

ronment, as illustrated in Fig. 4(a). The angles-of-departure

and arrival are different for such paths, i.e., 𝜃 ℓ
TX

≠ 𝜃 ℓ
RX
, and

given by 𝜃 ℓ
TX

= 𝜃p, 𝜃
ℓ
RX

= 𝜃p′ . The time delay is the com-

bined delay of the path through p & p′
, i.e., 𝜏ℓ =

dp;p′

c , where

dp;p′ = ∥p∥2 + ∥p − p′∥2 + ∥p′∥2. Furthermore, the path at-

tenuation can be modeled as the combined reflectivity and

path loss of the path through p & p′
, 𝛼ℓ = 𝜎p;p′ . Hence, the

double-bounce system model is

yDB (𝑡) =
∑︁
p,p′
p′≠p

𝜎p;p′aRX (𝜃p′ )a⊤TX (𝜃p)wTX𝑥

(
𝑡 −

dp;p′

c

)
. (7)

p p p’

p p’

p’’ (a) Double-bounce paths

p p p’

p p’

p’’

(b) Triple-bounce paths

Figure 4: Modeling double- and triple-bounce paths.

Note that valid locations of points p′ in the above equation
and Fig. 4(a) are limited to locations in front of the radar, for
the radar to be able to capture reflections from p′

.

Next, consider triple-bounce paths of the form: radar →
p → p′′ → p′ → radar, for triplets of locations p ≠ p′′ ≠
p′ ∈ R2 in the environment, as illustrated in Fig. 4(b). Note

that we have not enforced any relationship between p & p′

to include the special case p = p′, when triple-bounce occurs

between only two locations. The angles-of-departure and

arrival are given by 𝜃 ℓ
TX

= 𝜃p, 𝜃
ℓ
RX

= 𝜃p′ . The time delay is

the combined delay of the path through p, p′′
& p′

, i.e., 𝜏ℓ =
dp;p′′ ;p′

c , where dp;p′′ ;p′ = ∥p∥2+ ∥p−p′′∥2+ ∥p′′−p′∥2+ ∥p′∥2.
The path attenuation is the combined reflectivity and path

loss of the path through p, p′′
& p′

, 𝛼ℓ = 𝜎p;p′′ ;p′ . Hence, the

triple-bounce system model is

yTB (𝑡)=
∑︁

p,p′,p′′
p≠p′′≠p′

𝜎p;p′′ ;p′ a
RX
(𝜃p′ ) a⊤

TX
(𝜃p) wTX𝑥

(
𝑡−
dp;p′′ ;p′

c

)
. (8)

We note that valid locations of points p′′
in the above

equation and Fig. 4(b) are not only limited to locations in

front of the radar, but can also include locations behind the
radar, as long as locations p′

are in front of the radar.

Arbitrary 𝑛th-bounce can be modeled similarly:

yn−B (𝑡)=
∑︁

p
1
,· · · ,p𝑛

p
1
≠· · ·≠p𝑛

𝜎p
1· · ·𝑛

a
RX
(𝜃p𝑛 ) a⊤

TX
(𝜃p

1

) wTX𝑥

(
𝑡−

dp
1· · ·𝑛

c

)
,

where 𝜎p
1· · ·𝑛

and dp
1· · ·𝑛

denote the combined reflectivity and

path length of 𝑛th-bounce through locations p
1
, · · · , p

𝑛
. The

overall system model in (1) is then the sum of all multi-

bounce components, y(𝑡) = ySB (𝑡) + yDB (𝑡) + yTB (𝑡) + · · · .
We note that the above model is valid only for diffuse

multi-bounce scattering, which assumes that all objects in the

environment scatter incoming waves omni-directionally. Our
primary motivation for using a diffuse scattering model is to

meet our overall goal of sensing without requiring any prior

knowledge of the material properties of the environment.

Despite its limitations, our model and subsequent approach

yield good performance across a wide variety of specular

and diffuse objects, as detailed in our evaluation (Section 5).
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4.2 Multi-Bounce Spatial Matched Filtering
4.2.1 Motivation: Multipath “Ghosts”. We first motivate the

need for developing amulti-bouncematched filteringmethod.

Consider two point objects at ranges X and Y, and azimuth an-

gles 𝜙 and −𝜃 . For simplicity, assume an occluded direct path

to Object 2; hence, the radar receives signals along single-

bounce (radar → Object1 → radar) and triple-bounce

(radar → Object1 → Object2 → Object1 → radar) paths:

y(𝑡) = 𝜎1aRX
(𝜃 ) a⊤

TX
(𝜃 ) wTX

[
𝑥

(
𝑡− 2Y

c

)
+ 𝜎1𝜎2𝑥

(
𝑡− 2dTB

c

)]
,

where dTB = Y +
√︁
X2 + Y2 − 2XY cos(𝜃 + 𝜙) is the one-way

length of the triple-bounce path. Directly applying the single-

bounce matched filter from (4) yields two locations with high

reflectivity values: (i) the actual target location at range Y
and angle −𝜃 , and (ii) a “ghost” of Object 2 about Object 1,

at range dTB and angle −𝜃 . Without prior knowledge about

Object 1’s location, it is challenging to differentiate between

actual objects and “ghosts”, and in case of the latter, remap

them to their ground-truth locations. Therefore, we develop

an approach to automatically localize objects sensed along

multi-bounce paths to their ground-truth location, without

“ghost” detection and remapping.

4.2.2 Proposed Approach. To avoid “ghost” remapping, we

propose to directly estimate the multi-bounce reflectivities

of objects via a multi-bounce extension of the single-bounce

adjoint inversion (matched filtering) approach from (4).

Let ỹDB (𝜔), ỹTB (𝜔), · · · denote the multi-bounce system

models from (7)-(8) in the frequency domain after matched

filtering with transmit signal 𝑥 (𝑡). In the case of double-

bounce, we directly estimate the double-bounce reflectivity,

𝜎p;p′ , at location p′
due to reflection from location p as

𝜎̂p;p′ =
1

W

∑︁
𝜔

(
a⊤
TX
(𝜃p)wTX

)∗
𝑒 𝑗𝜔

dp;p′
c aH

RX
(𝜃p′ )ỹDB (𝜔). (9)

Intuition: (9) may be understood as: receive beamforming to
locations p′

(via aH
RX
(𝜃p′ )ỹSB (𝜔)), while transmit beamform-

ing towards p and compensating for the double-bounce path

length via a⊤
TX
(𝜃p)wTX𝑒

− 𝑗𝜔
dp;p′
c . Since only the receive beam-

forming term depends on p′
, the angular resolution of (9) is

limited to the angular resolution of the receive array, as also

illustrated in Fig. 5(a). In contrast, virtual array formation

due to same transmit and receive beamforming directions in

single-bounce enable higher angular resolution.

In triple-bounce, we estimate the triple-bounce reflectivity,

𝜎p;p′′ ;p′ , at location p′′ due to reflections from locations p, p′,

𝜎̂p;p′′ ;p′ =
1

W

∑︁
𝜔

(
a⊤
TX
(𝜃p)wTX

)∗
𝑒 𝑗𝜔

dp;p′′ ;p′
c aH

RX
(𝜃p′ )ỹTB (𝜔). (10)

p p’ p p’

(a) Double-bounce

p p’ p p’

(b) Triple-bounce

Figure 5: Intuitive understanding of double- and triple-
bounce adjoint inversion (matched filtering) in (9)-(10).

Intuition: The dependence on the triple-bounce object p′′

is only in the distance term dp;p′′ ;p′ . Hence, a single triple-

bounce path from points p, p′, (10) can only result in an arc at
point p′′, as shown in Fig. 5(b) for p′ = p, p′′ = p′. Reducing
the uncertainty from an arc to a unique point requires at

least three distinct triple-bounce paths passing through p′′
.

Extensions to arbitrary 𝑛th-bounce follow similarly:

𝜎̂p
1· · ·𝑛

=
1

W

∑︁
𝜔

(
a⊤
TX
(𝜃p

1

)wTX

)∗
𝑒 𝑗𝜔

dp
1· · ·𝑛
c aH

RX
(𝜃p𝑛 )ỹn−B (𝜔).

In the next subsection, we demonstrate how the developed

matched filtering approach is used to detect and localize

beyond-FoV objects via multi-bounce.

4.3 Sequential Detection & Localization
Extending the matched filtering approach from Section 4.2

to solve the general problem of beyond-FoV target detection

requires contending with two fundamental challenges: (i)

the power of single-bounce greatly dominates over higher-

order bounces, and (ii) lack of prior environment knowledge.

To tackle these challenges, we propose a sequential detec-
tion and localization approach, wherein objects in the envi-

ronment are first detected via single-bounce, then double-

bounce, followed by triple-bounce, and so on. We describe

our procedure sequentially, beginning with single-bounce.

Throughout, we assume the transmit beamforming weights

wTX are fixed and known to the radar.

4.3.1 Stage 1: Single-Bounce. The procedure begins with

single-bounce sensing. The radar first forms a spatial map

of its surroundings {𝜎̂p} via the single-bounce adjoint in-

version in (4). To detect key objects in the environment, we

use 2D ordered statistics (OS) CFAR [35]. In brief, OS-CFAR

computes the target-to-clutter ratio (TCR) corresponding to

each location p in the environment, where the target power

at p is defined as the reflectivity intensity, |𝜎̂p |2, and the clut-
ter power is the median value of reflectivity intensities of

points in a local neighborhood around p. The computed TCR

is then compared to a threshold, empirically chosen as 0.5×
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Figure 6: Fourth-bounce power too weak to be used.

the maximum TCR amongst all single-bounce reflectivities.

The output corresponds to the set of objects detected via

single-bounce. If an object is detected at a higher range but

same angle as another detection, the higher range object is

zeroed out since such a detection can only correspond to a

“ghost” and not a physical object. We denote the final set of

locations of single-bounce object detections by S1.

4.3.2 Stage 2: Double-Bounce. Next, the radar uses double-
bounce to localize beyond-FoV objects. For each single-bounce

detected point p ∈ S1, the radar estimates the double-bounce

reflectivity 𝜎̂p;p′ via (9) for locations p′
in the environment.

We ensure that locations p′
do not coincide with detected

single-bounce objects p ∈ S1 (for zero interference between

bounces), and moreover lie outside the radar’s transmit main-

lobe. The double-bounce reflectivity magnitude of the indi-

vidual point p′ is found by averagingmagnitudes of 𝜎̂p;p′ over

all single-bounce detections p ∈ S1, |𝜎̂
DB

p′ | =
1

|S1 |
∑

p∈S1 |𝜎̂p;p′ |.
OS-CFAR is then used to update the set of double-bounce

object detections S2, with threshold 0.5× the maximum TCR

of all double-bounce reflectivities.

4.3.3 Stage 3: Triple-Bounce. The above procedure is then
repeated for higher-order multi-bounce orders. For triple-

bounce, 𝜎̂p;p′′ ;p′ is estimated via (10) for each single- and

double-bounce pair (p, p′) ∈ S1×S2, for locations p′′ ∉ S1∪S2.
Triple-bounce reflectivity magnitudes of points p′′ are found
via averaging, |𝜎̂TB

p′′ | =
1

|S1×S2 |
∑

(p,p′ ) ∈S1×S2 |𝜎̂p;p′′ ;p′ |, and OS-

CFAR is used to update the triple-bounce set S3 as before.
The procedure can be similarly extended to 𝑛th-bounce.

4.3.4 Stopping Criteria. While the above procedure can be

performed up to arbitrary multi-bounce orders 𝑛, empirically

we observe that the received power of fourth- and higher-

order bounces is too low to be exploited. Fig. 6(b) plots the

range profile (power normalized to single-bounce path) for

a toy experiment conducted with three metallic cylinders,

with the radar transmitting towards C1, and C2 occluding

|𝛼| = 6

|𝛼| = 0.8

, |𝛼|

Figure 7: Error propagation analysis (Lemma 4.1).

C3 outside the transmit beam. We observe that the power

of fourth-bounce paths (e.g., radar → C1 → C3 → C1 →
C2 → radar) is much weaker than triple-bounce, with peaks

buried within the clutter and noise levels. Hence, in our

evaluation, we do not process beyond triple-bounce.

4.3.5 Computational Complexity. The computational com-

plexity of each adjoint inversion step, e.g., (4), (9) or (10),

is 𝑂 (TRW), where T/R is the number of transmit/receive

elements and W is the number of considered frequencies.

Hence, in single-bounce, for P locations p over which (4)

is evaluated, the total complexity is 𝑂 (TRWP). The target
detection steps (OS-CFAR and thresholding) are also 𝑂 (P);
hence the total complexity of single-bounce is 𝑂 (TRWP).
Given |S1 | single-bounce detections, the complexity of run-

ning the double-bounce adjoint inversion step (9) over |S1 |
locations p and P locations p′ is 𝑂 (TRW|S1 |P). Analogously,
the complexity of triple-bounce via (10) is𝑂 (TRW|S1×S2 |P).
In our evaluation, |S𝑛 | ≤ 6, ∀𝑛 ∈ {1, 2}, and each iteration

takes 11.98 s on average (with 0.25 s standard deviation) for

our MATLAB Intel i5 CPU-based implementation (which can

be further optimized via GPU implementation).

4.3.6 Error Propagation. Given the iterative nature of our

algorithm, one may expect errors in previous iterations to

propagate into the current iteration. To quantify potential

error propagation, we study the simple double-bounce con-

figuration depicted in Fig. 4(a) with two point objects at p
and p′

, and quantify the error in localizing p′
as a function

of the error in localizing p.

Lemma 4.1. Let ∆SB = p̂ − p be the location error vector for
localizing p via single-bounce adjoint inversion in (4). Then,
the location error vector ∆DB = p̂′ − p′ for localizing p′ via
double-bounce adjoint inversion in (9) is given by:

∆DB = 𝛼∆SB =

〈
∆SB ,

p−p′

∥p−p′ ∥2 +
p

∥p∥2
〉〈

∆SB ,
p−p′

∥p−p′ ∥2 −
p′

∥p′ ∥2
〉∆SB .

The above result is proved in Appendix B. Fig. 7 plots the

cumulative distribution function (CDF) of the magnitude of
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Figure 8: Indoor & outdoor experiment scenarios.

the scaling factor |𝛼 | relating ∆DB and ∆SB over 1000 inde-

pendent trials with randomly generated locations p ≠ p′
.

The median value of |𝛼 | is 0.8 and its 90th-percentile value

is 6; hence the impact of single-bounce localization error on

double-bounce error would be at most 6× (with 90% proba-

bility). Hence, lower error in single-bounce localization will

yield lower localization errors in double-bounce with Hydra.

4.3.7 Compatibility with Beam Steering. The proposed pro-

cedure can be easily extended to a beam steering radar. Given

a set of transmit beamforming weights wTX ∈ WTX , the pro-

cedure in each of the above stages can be performed for each

wTX ∈ WTX to yield an object detection set S𝑛 (wTX ). Subse-
quently, the union of sets S𝑛 = ∪WTX

S𝑛 (wTX ) can be passed

to the (𝑛 + 1)th stage of our procedure.

5 PERFORMANCE EVALUATION
5.1 Implementation & Methodology
Implementation: We implement Hydra on a commercial

digital mmWave MIMO radar, AWR2243 cascade radar [18]

from Texas Instruments, which supports up to 12 transmit

and 16 receive elements and operates in the 76 − 81 GHz

band. We only use 9 of the 12 total transmit elements since

we only sense in azimuth and not elevation. We configure

the radar to transmit beamforming mode; each transmission

consists of 10 frames
3
with 64 FMCW chirps of duration 40𝜇s

and slope 79 MHz/𝜇s per frame. A laptop with Intel i5 CPU

and 12 GB RAM is used to control the radar and process data.

All processing is performed via custom MATLAB functions.

In our results, we discretize the range-azimuth plane into 6

cm × 1
◦
resolution bins. We use a 2D OS-CFAR detector with

a sliding window of size 17×17 bins, with the cell-under-test

and guard window occupying the middle 7 × 7 bins.

Experiment Scenarios: We collect data in five indoor and

outdoor scenarios (Fig. 8) - a large indoor hall (S1), an indoor

lobby (S2), an indoor U-shaped staircase bend (S3), an out-

door building corridor (S4), and an outdoor terrace (S5). In

all cases, the radar is at a height of 1 m above the ground.

Data Collection: We configure the radar to transmit in an

experiment-specific azimuth angle set Θ ⊆ [−60◦, +60◦] and
capture reflections from the surrounding environment in

3
we average data across frames to boost received signal-to-noise ratio

the presence of different objects (room furniture, humans
4
,

etc.). We ensure the radar and the environment remain static

during our experiments; mobility is left for future work.

GroundTruth:We establish ground truth object locations in

the environment with respect to the radar via measurements

with a measuring tape and laser distance range finder.

Baseline: We compare Hydra with single-bounce sensing

via (4) utilizing both main- and side-lobes of the radar’s trans-

mit beampattern, and also proposed in [48]. We note that

our choice of baseline is equivalent to methods that iden-

tify and suppress multipath “ghosts” observed at the output

of single-bounce processing [6, 10, 21]. In contrast, Hydra
incorporates multi-bounce into the radar signal processing

pipeline and does not require explicit “ghost” identification.

PerformanceMetrics:We evaluate the overall performance

of Hydra via the localization error for a beyond-FoV human.

Since the output of Hydra is generally a collection of points,

we define the localization error as the minimum distance

between the human’s ground truth location and the set of

locations outputted by Hydra. We also use the received signal

strength (RSS) along multi-bounce paths, with appropriate

normalization, in our microbenchmark evaluation.

5.2 Qualitative System Demonstration
First, we demonstrate double-bounce sensing of humans out-
side the radar’s transmit beam. Fig. 9(a) shows the experiment

setup in Scenario S1 with two humans, Human 1 (H1) at 2.5

m, −15◦ and Human 2 (H2) at 2.5 m, +30◦. Figs. 9(b)-(c) show
the single-bounce and double-bounce target-to-clutter ra-

tio (TCR) maps outputted by Hydra. We observe that H2

is not detected in the single-bounce output (Fig. 9(b)), be-

cause its TCR is below the single-bounce detection threshold.

However, with appropriate double-bounce processing, H2

is detected near its ground-truth location in Fig. 9(c), albeit

with lower TCR as compared to the single-bounce detec-

tion of H1. We further present double-bounce outputs for

different choices of reflectors in place of H1 - a whiteboard

in Fig. 9(d) and a brick pillar in Fig. 9(e). Besides localizing

the human near its ground-truth location, we also observe

that the double-bounce TCR is material dependent - low-

est for brick pillar (21 dB), followed by whiteboard (25 dB)

and human (26 dB). We exhaustively quantify the impact of

reflector material on performance later in Section 5.4.

Next, we demonstrate sensing around-corners and behind-
the-radar using triple-bounce. Fig. 10(a) shows the around-
corner experiment setup in Scenario S3, with a radar and

human on opposite ends of the U-shaped staircase bend. The

radar transmits in [−30◦, 30◦] to capture multiple points on

the staircase bend via single-bounce, which are subsequently

4
all our experiments involving human subjects have been performed with

Institutional Review Board (IRB) approval
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Figure 9: Double-bounce sensing of a human standing outside the radar’s transmit beam. (a): Setup in S1, with radar
configured to transmit towards Human 1 (H1). (b)-(c): H1 detected via single-bounce, H2 detected via double-bounce.
(d)-(e): Double-bounce outputs for similar setup as in (a) but with whiteboard and brick pillar in place of Human 1.

Human

Radar H

(a) Setup in S3

Human

Radar H

(b) Triple-bounce output

Figure 10: Triple-bounce around-corner sensing of a
human standing on the opposite end of a U-shaped
staircase bend, with radar transmitting in [−30◦, 30◦].
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Figure 11: Triple-bounce behind-radar sensing of a
metallic cylinder C3 at 𝜙 = 30

◦, with radar transmit
beamforming to C1 at 𝜃1 = 75

◦, and C2 kept at 𝜃2 = 30
◦.

used to localize the beyond-FoV human via triple-bounce.

We ensure triple-bounce from only the human and not the

staircase via background subtraction, i.e., capturing two mea-

surements - one with the human and the other without - and

subtracting the two to remove intra-staircase multi-bounce.

Fig. 10(b) shows successful human localization in this case.

Finally, Fig. 11(a) shows the behind-radar experiment setup

in Scenario S1, with a radar transmitting towards a metallic

cylinder C1, aiming to localize C2 outside the transmit beam

via double-bounce and C3 behind the radar via triple-bounce.

2.9 m1.1 m 11.25°

Human

Radar

Human 
Locations

Radar

(a) Setup 1 (S3)

Reflector

Radar

Reflector

Walls
45°

Radar

26°

(b) Setup 2 (S5)

Reflector

Radar

Reflector

Walls
45°

Radar

26°

(c) Setup 3 (S2)

Figure 12: Experiment setups to evaluate overall local-
ization error of Hydra for a human target standing in
various grid locationsmarkedwith filled black/blue cir-
cles. The radar transmit beamforms towards [−30◦, 30◦]
in (a), and towards the reflectors at 0◦ in (b) and (c).

Since only C1 is illuminated directly, there are only two possi-

ble triple-bounce paths: radar → C1 → C3 → C1 → radar
and radar → C1 → C3 → C2 → radar. Fig. 11(a) shows the
triple-bounce output of Hydra, showing two arcs correspond-
ing to the triple-bounce paths intersecting with maximum

TCR at the ground-truth location of C3. Fig. 11(b) is signifi-

cantly “noisier” and has lower TCRs compared to Fig. 10(b)

due to lower number of paths (2) to average over in Stage 3

of Hydra’s processing (Section 4.3.3).

5.3 Overall System Performance
We quantify the overall system performance via exhaustive

human localization experiments in Scenarios S2, S3 and S5. In

each experiment, a human stands in different locations on a

2D grid, as shown in Figs. 12(a)-(c). Figs. 12(a)-(b) correspond

to around-corner scenarios, where the radar uses reflections

from either the U-shaped staircase bend in Fig. 12(a) or a

small reflector (metal trashcan) in Fig. 12(b) to localize the

human. The grid in Fig. 12(c) includes locations in front of

and behind the radar, and the radar uses reflections from the

reflector (metal trashcan) to localize the human.
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Figure 13: Overall system performance. (a)-(c): Human localization error for setup in Fig. 12(a) across different grid
locations. As higher orders of multi-bounce are exploited, the human is localized with sub-0.5m error in more
grid locations. (d): Statistics of human localization error across Setups 1-3 from Fig. 12. Adding double-bounce and
triple-bounce decreases the median localization error by 2× and 10× respectively as compared to single-bounce.
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Figure 14: Experiment setups for single-reflector microbenchmark evaluation of Hydra’s beyond-FoV localization.

Figs. 13(a)-(c) visualize the localization error across differ-

ent human locations in Setup 1 from Fig. 12(a). As higher

orders of multi-bounce beyond single-bounce are exploited,

the human is localized with sub-0.5 m error in more grid

locations; effectively increasing the sensing FoV of the radar.

Fig. 13(d) shows the overall statistics of the beyond-FoV

human localization errors across all three setups from Fig. 12.

Compared to single-bounce only processing, the median

error decreases by 2× on adding double-bounce, and by 10×
on further adding triple-bounce. We observe similar 1.5×-5×
reduction in the 90th-percentile errors on adding double- and

triple-bounce, showing the benefit of using multi-bounce.

Note that the ground-truth locations used in our localiza-

tion error calculations are based on the 2D grid locations

where a human stands. Given that human bodies have finite

diameters, in practice, reflections may occur from a slightly

offset point on the body compared to its centroid, explaining

why our best median errors are in the order of 0.1 − 0.2 m.

5.4 Microbenchmark Evaluation
Finally, we evaluate the impact of various system parameters

on the beyond-FoV human localization performance. For

ease of evaluation, we only process up to double-bounce.

Throughout our evaluation, we label the objects within the

radar’s transmit beam as “reflectors”.

Impact of Reflector Material: We begin by quantifying

the impact of the material properties of a single reflector

placed within the radar’s transmit beam. We perform exhaus-

tive experiments in three different configurations shown in

Figs. 14(a)-(c) for different reflector choices. In Fig. 14(a), the

radar transmits towards a reflector at 0
◦
while the human

stands still at range 2

√
2 m and angle −45◦ from the radar.

Three different reflectors (metal trashcan, another human

and a plastic chair) are moved from range X = 1.22 m to

X = 6.1 m in steps of 0.61 m. Note that the double-bounce

range as per Fig. 14(a) is dDB = 0.5(X + Y + 2

√
2) m. As

our first evaluation metric, we use the double-bounce RSS,

which is normalized by the single-bounce RSS for a human

standing at a single-bounce range of dDB in order to cancel

out the distance dependence and only retain the impact of
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Figure 15: Impact of reflector material on double-
bounce RSS and localization error (microbenchmark).

reflector material. Fig. 15(a) shows that the RSS of the metal

trashcan and human is roughly similar, with median values

of −23 dB and −22 dB respectively. However, the RSS of the

plastic chair is much lower than both, with median value −27
dB. Therefore, we expect better system performance with

highly reflective objects, such as metals or human bodies, as

compared to lower reflectivity objects made of plastic.

Next, we quantify the impact of the reflector material on

the overall localization error for the setups in Figs. 14(b)-(c).

In Fig. 14(b), the radar transmits towards different small re-

flectors (metal trashcan, another human and plastic chair)

kept fixed at range 2.5 m and 0
◦
, while the human stands

at different locations on the marked 2D grid. In Fig. 14(c),

the radar transmit beam sweeps from [−30◦, 30◦] to sample

different points on different extended reflectors (wooden

cabinet and glass wall), while the human stands at different

locations on the marked 2D grid. Fig. 15(b) plots the local-

ization error statistics for different materials. As expected

from our conclusion from Fig. 15(a), we observe that the

median localization error is lowest for the metal trashcan,

followed by that of the human (with similar variance), and

then the plastic chair (largest median error and variance).

However, counter-intuitively, the wooden cabinet has lower

localization error than the glass wall. We believe the high

reflectivity of glass and metallic features on the wall degrade

Hydra’s localization performance. However, exploiting multi-

ple double-bounce paths from different points on the surface

of extended reflectors reduces the localization error variance

as compared to small reflectors.

Impact of Range: To quantify the impact of range, we con-

sider the variation of the double-bounce RSS as a function

of the double-bounce range dDB = 0.5(X + Y + 2

√
2) m in the

setup in Fig. 14(a). As per the well-known radar range equa-

tion, we expect the double-bounce RSS to vary as follows:

PRX,DB =
𝛼𝜎SB𝜎DB

d4DB
,

where 𝛼 is a constant term collecting the effect of transmit

and receive array gain, wavelength dependence, etc., and 𝜎SB
and 𝜎DB are material-dependent reflectivities of the single-

bounce reflector and double-bounce human. In Fig. 16(a),

we plot the double-bounce RSS, with appropriate normal-

ization to cancel out the constant 𝛼 and material-dependent

terms 𝜎SB, 𝜎DB (by using the mean material loss values ob-

tained from Fig. 15(a)). We observe that the overall trend of

the double-bounce RSS across all three considered materials

matches theory (d−4DB) quite well. The discrepancies at close-
by reflector ranges X = 1.22 m and X = 1.83 m for the metal

trashcan possibly stem from the non-point object behavior

of the trashcan at these distances, i.e., a larger portion of its

surface contributes to double-bounce, boosting the RSS.

Impact of Reflector Orientation:We also quantify the de-

pendence on reflector orientation by considering the double-

bounce RSS as a function of the orientation angle 𝜓 of the

reflector’s surface normal, for the setup shown in Fig. 14(d).

We consider three reflectors: human body, whiteboard and

plywood board. Fig. 16(b) shows that human body and ply-

wood act as diffuse reflectors, scattering incoming signals

omnidirectionally regardless of orientation. On the other

hand, the whiteboard is strongly specular, with maximum

RSS at𝜓 = 45
◦
- the optimal orientation for double-bounce

reflections towards the human according to the law of re-

flection. We also observe a second-largest peak at 𝜓 = 90
◦

due to reflections from the whiteboard’s metallic edges that

become oriented towards the radar at this angle.

Impact of Transmit Beam Direction: We further eval-

uate the impact of the radar’s transmit beam direction on

subsequent localization performance. We consider the setup

shown in Fig. 14(e) with two metallic cylinders; the radar

transmits towards Cylinder 1 at range Y m and angle 𝜃 ,

whereas Cylinder 2 is kept at different angles𝜙 ∈ [−80◦, 80◦],
in steps of 10

◦
. We consider three different locations of Cylin-

der 1 - (Y = 3.5 m, 𝜃 = −10◦), (Y = 2.5 m, 𝜃 = 0
◦
), and

(Y = 1.5 m, 𝜃 = 20
◦
). Fig. 16(c) shows that the localization er-

ror statistics for the three cases are similar, implying similar

performance regardless of transmit beam direction. How-

ever, we note that the localization error variance is largest

when (Y = 2.5 m, 𝜃 = 0
◦
) and smallest when (Y = 3.5 m,

𝜃 = −10◦). We explain this result on the basis of the transmit

beampattern matrices from Fig. 2, where the beampattern

has only two side-lobes within 𝜙 ∈ [−80◦, 80◦] when 𝜃 = 0
◦
,

but four side-lobes otherwise. Thus, we expect single-bounce

to be useful slightly less often when 𝜃 = 0
◦
than otherwise,

explaining the result. Moreover, (Y = 3.5 m, 𝜃 = −10◦) seems

to perform best because the metallic cylinders are not exactly

point objects; hence we expect the Cylinder 1 to scatter more

energy towards Cylinder 2 when placed behind the latter.

Impact of Multiple Reflectors: Next, we evaluate the im-

pact of exploiting double-bounce from multiple reflectors.
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(c) Loc. error vs TX direction

Figure 16: Single-reflectormicrobenchmarks. (a) RSS decays as R−4 with double-bounce range. (b) RSS of whiteboard
depends on orientation, but not of human or plywood. (c) Transmit beam direction does not impact performance.
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Radar
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(1 m, 30°)
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Figure 17: Multi-reflector microbenchmarks. (a) Setup with multiple metallic cylinders (reflectors) in [−60◦, +60◦].
(b)-(c) Localization error improves withmore number of reflectors and as a larger setΘ ⊆ [−60◦, +60◦] is illuminated.

We place multiple metallic cylinders (reflectors) and quantify

the localization error statistics for a human standing on a

grid of 18 locations outside [−60◦, 60◦], as shown in Fig. 17(a).
We configure the radar to beam sweep in Θ = [−40◦, 40◦]
and place an increasing number of reflectors in [−40◦, 40◦]
at various locations in {(2 m, 0

◦
), (1 m, 30

◦
), (2 m, 30

◦
), (2

m, −15◦), (3 m, −15◦), (2 m, 15
◦
)}. Fig. 17(b) shows the CDF

of localization errors across multiple scenarios with 1 to

4 reflectors. Overall, we observe that Hydra’s performance

improves as a higher number of reflectors are illuminated.

Impact of Radar Beam Sweep: Finally, we evaluate the
impact of the beam sweep intervalΘ ⊆ [−60◦, 60◦]. We place

4 reflectors at locations (2 m, 0
◦
), (2 m, 30

◦
), (2 m, −15◦), (2 m,

−45◦) and configure the radar to beam sweep in different sets

Θ ∈ {[−10◦, 10◦], [−20◦, 20◦], [−40◦, 40◦, [−60◦, 60◦]]}, such
that different subsets of those 4 reflectors are illuminated.

Fig. 17(c) shows that the CDF of localization errors improves

with larger sets Θ, i.e., as more reflectors are illuminated.

6 DISCUSSION & LIMITATIONS
Multiple beyond-FoV & occluded targets:While we have

evaluated Hydra’s performance for single target (human)

localization, in practice one may want to jointly localize

multiple beyond-FoV targets, some of whichmay be occluded

by other targets. Fig. 18 shows the double-bounce outputs

corresponding to two possible multi-target scenarios. Hydra
can localize two targets via double-bounce on opposite sides

(Fig. 18(a)) or the same side (Fig. 18(b)) of a reflector, provided

the targets do not occlude one another and are separated by

≥ 20
◦
. However, Hydra cannot localize objects occluded by

other objects, e.g., H4 in Fig. 18(a), using double- and triple-

bounce, and experimentally we did not observe significant

fourth-bounce to use for such purposes. Future extensions

to 3D object imaging could overcome this limitation.

Non-detections in single-bounce: A drawback of Hydra’s
sequential processing is that it relies on single-bounce de-

tections in order to exploit further multi-bounce. Without
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Figure 18: Multiple beyond-FoV & occluded targets. (a)
When radar transmits towards H1, H2 and H4 on oppo-
site sides of H1 are detectable through double-bounce,
but not H3 (occluded by H1). (b) When radar transmits
towards C1, double-bounce detects C2 and C3 (sepa-
rated by 20

◦), with a “target masking” effect on C3.

sufficient single-bounce detections on the reflector surface,

e.g., when a small planar surface is oriented away from the

radar, Hydra performs slightly worse than methods with per-

fect reflector knowledge [2, 44]. Table 2 shows the average

localization errors in the around-corner setup from Fig. 12(b),

for three different planar reflectors of length 0.5 m at a range

of 3 m. Only center points on the reflectors are detected by

Hydra, hence Hydra is outperformed by [2, 44].

Diffuse modeling:We assumed a diffuse model in Hydra
to enable beyond-FoV sensing without prior environment

knowledge. Future work will explore incorporating limited

additional prior knowledge of the environment, e.g., material

properties and surface normals, for finer-grained modeling.

Single-chip radars: We evaluated Hydra using a four-chip

cascade MIMO radar [18] with 9 transmit and 16 receive

elements (in azimuth). While the main concepts and model-

ing remain applicable to even single-chip radars, e.g., TI’s

AWR1843BOOST [17], adapting Hydra to such radars would

require developing super-resolution routines in order to over-

come their poorer azimuth resolution (∼ 15
◦
).

Imaging extended objects:Although our evaluation in this
paper is largely limited to localizing objects, we believe our

techniques can also be adapted for imaging extended objects.

3D sensing with mobility: Hydra is limited to 2D range-

azimuth sensing of static objects. Future work will also ex-

plore extensions to 3D sensing of mobile beyond-FoV objects.

Optimal reflector design: Finally, building upon Hydra
which exploits natural multi-bounce in the environment, an

interesting avenue for future work is the design of optimal

reflectors, e.g., using metasurfaces, for beyond-FoV sensing.

7 CONCLUSION
In this paper, we described the design and evaluation of

Hydra, a framework that uses multi-bounce scattering to

Method Plywood board Metal board Whiteboard

Known refl. 0.24 m 0.16 m 0.11 m

Hydra 0.34 m 0.24 m 0.25 m

Table 2: Hydra has larger localization errors compared
to methods with perfect reflector knowledge when the
entire reflector surface is notmapped in single-bounce.

enable beyond-field-of-view sensing with a single mmWave

radar without prior knowledge of the environment. Our

implementation on a commercial MIMO radar demonstrated

the possibility of localizing humans outside the transmit

beam, behind-the-radar and around-corners, with 2×-10×
improvement in the median localization error in real-world

scenarios even with no prior knowledge of the environment.
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A DERIVATION OF (6)
For an object at location p(𝜙), the single-bounce system

model as per (3) is

ỹSB (𝜔) = 𝜎p(𝜙 )aRX (𝜙)a⊤TX (𝜙)wTX𝑒
− 𝑗𝜔

2∥p(𝜙 ) ∥
2

c .

Substituting the above expression into (4) results in

𝜎̂p(𝜙 ) =
1

W

∑︁
𝜔

(
a⊤
TX
(𝜙)wTX

)∗
𝑒 𝑗𝜔

2∥p(𝜙 ) ∥
2

c aH
RX
(𝜙)ỹSB (𝜔)

= 𝜎p(𝜙 ) |a⊤TX (𝜙)wTX |2,

which results in (6) on substituting wTX = aTX (𝜃 ) and assum-

ing unit-norm receive array steering vector aRX (𝜙).

B PROOF OF LEMMA 4.1
Let p̂ = p + ∆SB be the estimated location of the object at

p via single-bounce adjoint inversion in (4). As per (9), the

double-bounce location estimate p̂′
satisfies:

∥p̂∥2 + ∥p̂ − p̂′∥2 + ∥p̂′∥2 = ∥p∥2 + ∥p − p′∥2 + ∥p′∥2 .

Substituting p̂′ = p′ + ∆DB and assuming ∥p∥2 ≫ ∥∆SB ∥2,
∥p′∥2 ≫ ∥∆DB ∥2, ∥p − p′∥2 ≫ ∥∆SB − ∆DB ∥2, we obtain:〈

∆SB − ∆DB ,
p − p′

∥p − p′∥2

〉
+
〈
∆SB ,

p
∥p∥2

〉
+
〈
∆DB ,

p′

∥p′∥2

〉
= 0,

which on rearranging yields Lemma 4.1.



ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA Mehrotra et al.

REFERENCES
[1] Mustafa Riza Akdeniz, Yuanpeng Liu, Mathew K. Samimi, Shu Sun,

Sundeep Rangan, Theodore S. Rappaport, and Elza Erkip. 2014. Millime-

ter Wave Channel Modeling and Cellular Capacity Evaluation. IEEE
Journal on Selected Areas in Communications 32, 6 (2014), 1164–1179.
https://doi.org/10.1109/JSAC.2014.2328154

[2] Mohammed Aladsani, Ahmed Alkhateeb, and Georgios C. Trichopou-

los. 2019. Leveraging mmWave Imaging and Communications for

Simultaneous Localization and Mapping. In ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 4539–4543. https://doi.org/10.1109/ICASSP.2019.8682741

[3] Augusto Aubry, Antonio De Maio, and Massimo Rosamilia. 2021.

Reconfigurable Intelligent Surfaces for N-LOS Radar Surveillance.

IEEE Transactions on Vehicular Technology 70, 10 (2021), 10735–10749.

https://doi.org/10.1109/TVT.2021.3102315

[4] Kang Min Bae, Hankyeol Moon, Sung-Min Sohn, and Song Min Kim.

2023. Hawkeye: Hectometer-Range Subcentimeter Localization for

Large-Scale MmWave Backscatter. In Proceedings of the 21st Annual
International Conference on Mobile Systems, Applications and Services
(Helsinki, Finland) (MobiSys ’23). Association for Computing Machin-

ery, New York, NY, USA, 303–316. https://doi.org/10.1145/3581791.

3596869

[5] Oliver Biallawons and Joachim H. G. Ender. 2020. Virtual Multistatic

Illumination by Exploitation of Multipath Propagation with Coherent

MIMO Radar. In 2020 IEEE Radar Conference (RadarConf20). 1–5. https:
//doi.org/10.1109/RadarConf2043947.2020.9266650

[6] Weiyan Chen, Hongliu Yang, Xiaoyang Bi, Rong Zheng, Fusang

Zhang, Peng Bao, Zhaoxin Chang, Xujun Ma, and Daqing Zhang.

2023. Environment-Aware Multi-Person Tracking in Indoor Envi-

ronments with MmWave Radars. Proc. ACM Interact. Mob. Wear-
able Ubiquitous Technol. 7, 3, Article 89 (sep 2023), 29 pages. https:

//doi.org/10.1145/3610902

[7] Zhe Chen, Guorong Zhu, Sulei Wang, Yuedong Xu, Jie Xiong, Jin

Zhao, Jun Luo, and Xin Wang. 2021. 𝑀3
M3: Multipath Assisted Wi-Fi

Localization with a Single Access Point. IEEE Transactions on Mobile
Computing 20, 2 (2021), 588–602. https://doi.org/10.1109/TMC.2019.

2950315

[8] Margaret Cheney and Brett Borden. 2009. Fundamentals of Radar
Imaging. SIAM.

[9] Daniele Faccio, Andreas Velten, and Gordon Wetzstein. 2020. Non-

line-of-sight imaging. Nature Reviews Physics 2, 6 (2020), 318–327.
[10] Ruoyu Feng, Eddy De Greef, Maxim Rykunov, Hichem Sahli, Sofie

Pollin, and André Bourdoux. 2022. Multipath Ghost Recognition for

Indoor MIMO Radar. IEEE Transactions on Geoscience and Remote
Sensing 60 (2022), 1–10. https://doi.org/10.1109/TGRS.2021.3109381

[11] Dolores Garcia, Jesus Omar Lacruz, Pablo Jiménez Mateo, and Joerg

Widmer. 2020. POLAR: Passive object localization with IEEE 802.11ad

using phased antenna arrays. In IEEE INFOCOM 2020 - IEEE Conference
on Computer Communications. 1838–1847. https://doi.org/10.1109/

INFOCOM41043.2020.9155383

[12] Gianluca Gennarelli and Francesco Soldovieri. 2015. Multipath Ghosts

in Radar Imaging: Physical Insight and Mitigation Strategies. IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing 8, 3 (2015), 1078–1086. https://doi.org/10.1109/JSTARS.2014.

2363233

[13] Junfeng Guan, Sohrab Madani, Suraj Jog, Saurabh Gupta, and Haitham

Hassanieh. 2020. Through Fog High-Resolution Imaging Using Mil-

limeter Wave Radar. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

[14] Junfeng Guan, Arun Paidimarri, Alberto Valdes-Garcia, and Bod-

hisatwa Sadhu. 2021. 3-D Imaging Using Millimeter-Wave 5G Signal

Reflections. IEEE Transactions on Microwave Theory and Techniques 69,

6 (2021), 2936–2948. https://doi.org/10.1109/TMTT.2021.3077896

[15] Geonho Han, Junil Choi, and Robert W. Heath. 2022. Radar Imaging

Based on IEEE 802.11ad Waveform in V2I Communications. IEEE
Transactions on Signal Processing (2022), 1–16. https://doi.org/10.1109/

TSP.2022.3213488

[16] Zhanjun Hao, Hao Yan, Xiaochao Dang, Zhongyu Ma, Peng Jin, and

Wenze Ke. 2022. Millimeter-Wave Radar Localization Using IndoorMul-

tipath Effect. Sensors 22, 15 (2022). https://doi.org/10.3390/s22155671

[17] Texas Instruments. 2019. AWR1843 single-chip mmWave radar. https:

//www.ti.com/tool/AWR1843BOOST

[18] Texas Instruments. 2019. AWR2243 four-chip cascade mmWave radar.

https://www.ti.com/tool/TIDEP-01012

[19] Ish Kumar Jain, Raghav Subbaraman, Tejas Harekrishna Sadarahalli,

Xiangwei Shao, Hou-Wei Lin, and Dinesh Bharadia. 2020. MMobile:

Building a MmWave Testbed to Evaluate and Address Mobility Effects.

In Proceedings of the 4th ACM Workshop on Millimeter-Wave Networks
and Sensing Systems (London, United Kingdom) (mmNets’20). Associa-
tion for Computing Machinery, New York, NY, USA, Article 4, 6 pages.

https://doi.org/10.1145/3412060.3418433

[20] Shouhei Kidera, Takuya Sakamoto, and Toru Sato. 2011. Extended

Imaging Algorithm Based on Aperture Synthesis With Double-

Scattered Waves for UWB Radars. IEEE Transactions on Geoscience
and Remote Sensing 49, 12 (2011), 5128–5139. https://doi.org/10.1109/

TGRS.2011.2158108

[21] Michael Leigsnering, Moeness Amin, Fauzia Ahmad, and Abdelhak M.

Zoubir. 2014. Multipath Exploitation and Suppression for SAR Imaging

of Building Interiors: An overview of recent advances. IEEE Signal
Processing Magazine 31, 4 (2014), 110–119. https://doi.org/10.1109/

MSP.2014.2312203

[22] Ze Li, Zengshan Tian, Zhongchun Wang, and Zhenyuan Zhang. 2021.

Multipath-Assisted Indoor Localization Using a Single Receiver. IEEE
Sensors Journal 21, 1 (2021), 692–705. https://doi.org/10.1109/JSEN.

2020.3012786

[23] Jaime Lien, Nicholas Gillian, M. Emre Karagozler, Patrick Amihood,

Carsten Schwesig, Erik Olson, Hakim Raja, and Ivan Poupyrev. 2016.

Soli: Ubiquitous Gesture Sensing with Millimeter Wave Radar. ACM
Trans. Graph. 35, 4, Article 142 (jul 2016), 19 pages. https://doi.org/10.

1145/2897824.2925953

[24] David B. Lindell, GordonWetzstein, and Vladlen Koltun. 2019. Acoustic

Non-Line-Of-Sight Imaging. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR).

[25] David B. Lindell, GordonWetzstein, andMatthewO’Toole. 2019. Wave-

Based Non-Line-of-Sight Imaging Using Fast f-kMigration. ACMTrans.
Graph. 38, 4, Article 116 (jul 2019), 13 pages. https://doi.org/10.1145/

3306346.3322937

[26] Chris Xiaoxuan Lu, Stefano Rosa, Peijun Zhao, Bing Wang, Changhao

Chen, John A. Stankovic, Niki Trigoni, and Andrew Markham. 2020.

See through Smoke: Robust Indoor Mapping with Low-Cost MmWave

Radar. In Proceedings of the 18th International Conference on Mobile
Systems, Applications, and Services (Toronto, Ontario, Canada) (MobiSys
’20). Association for Computing Machinery, New York, NY, USA, 14–27.

https://doi.org/10.1145/3386901.3388945

[27] Nishant Mehrotra, Divyanshu Pandey, Upamanyu Madhow, Yasamin

Mostofi, and Ashutosh Sabharwal. 2024. Instantaneous Velocity Vector

Estimation Using a SingleMIMORadar ViaMulti-Bounce Scattering. In

2024 IEEE Conference on Computational Imaging Using Synthetic Aper-
tures (CISA). 1–5. https://doi.org/10.1109/CISA60639.2024.10576593

[28] Nishant Mehrotra and Ashutosh Sabharwal. 2022. When Does Multi-

path Improve Imaging Resolution? IEEE Journal on Selected Areas in
Information Theory 3, 1 (2022), 135–146.

[29] Kaitao Meng, Qingqing Wu, Robert Schober, and Wen Chen. 2022.

Intelligent Reflecting Surface Enabled Multi-Target Sensing. IEEE

https://doi.org/10.1109/JSAC.2014.2328154
https://doi.org/10.1109/ICASSP.2019.8682741
https://doi.org/10.1109/TVT.2021.3102315
https://doi.org/10.1145/3581791.3596869
https://doi.org/10.1145/3581791.3596869
https://doi.org/10.1109/RadarConf2043947.2020.9266650
https://doi.org/10.1109/RadarConf2043947.2020.9266650
https://doi.org/10.1145/3610902
https://doi.org/10.1145/3610902
https://doi.org/10.1109/TMC.2019.2950315
https://doi.org/10.1109/TMC.2019.2950315
https://doi.org/10.1109/TGRS.2021.3109381
https://doi.org/10.1109/INFOCOM41043.2020.9155383
https://doi.org/10.1109/INFOCOM41043.2020.9155383
https://doi.org/10.1109/JSTARS.2014.2363233
https://doi.org/10.1109/JSTARS.2014.2363233
https://doi.org/10.1109/TMTT.2021.3077896
https://doi.org/10.1109/TSP.2022.3213488
https://doi.org/10.1109/TSP.2022.3213488
https://doi.org/10.3390/s22155671
https://www.ti.com/tool/AWR1843BOOST
https://www.ti.com/tool/AWR1843BOOST
https://www.ti.com/tool/TIDEP-01012
https://doi.org/10.1145/3412060.3418433
https://doi.org/10.1109/TGRS.2011.2158108
https://doi.org/10.1109/TGRS.2011.2158108
https://doi.org/10.1109/MSP.2014.2312203
https://doi.org/10.1109/MSP.2014.2312203
https://doi.org/10.1109/JSEN.2020.3012786
https://doi.org/10.1109/JSEN.2020.3012786
https://doi.org/10.1145/2897824.2925953
https://doi.org/10.1145/2897824.2925953
https://doi.org/10.1145/3306346.3322937
https://doi.org/10.1145/3306346.3322937
https://doi.org/10.1145/3386901.3388945
https://doi.org/10.1109/CISA60639.2024.10576593


Multi-Bounce Scattering for Beyond-Field-of-View mmWave Radar ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA

Transactions on Communications 70, 12 (2022), 8313–8330. https:

//doi.org/10.1109/TCOMM.2022.3217564

[30] Vishal M. Patel, Joseph N. Mait, Dennis W. Prather, and Abigail S.

Hedden. 2016. Computational Millimeter Wave Imaging: Problems,

progress, and prospects. IEEE Signal Processing Magazine 33, 5 (2016),
109–118. https://doi.org/10.1109/MSP.2016.2581206

[31] Andreas Pedross-Engel, Claire M. Watts, and Matthew S. Reynolds.

2020. High-Throughput 3-D Millimeter-Wave Imaging of Packaged

Goods : (Invited Paper). In 2020 IEEE Radar Conference (RadarConf20).
1–6. https://doi.org/10.1109/RadarConf2043947.2020.9266489

[32] Akarsh Prabhakara, Tao Jin, Arnav Das, Gantavya Bhatt, Lilly Kumari,

Elahe Soltanaghai, Jeff Bilmes, Swarun Kumar, and Anthony Rowe.

2023. High Resolution Point Clouds frommmWave Radar. In 2023 IEEE
International Conference on Robotics and Automation (ICRA). 4135–4142.
https://doi.org/10.1109/ICRA48891.2023.10161429

[33] Akarsh Prabhakara, Vaibhav Singh, Swarun Kumar, and Anthony

Rowe. 2020. Osprey: A MmWave Approach to Tire Wear Sensing.

In Proceedings of the 18th International Conference on Mobile Systems,
Applications, and Services (Toronto, Ontario, Canada) (MobiSys ’20).
Association for Computing Machinery, New York, NY, USA, 28–41.

https://doi.org/10.1145/3386901.3389031

[34] Kun Qian, Zhaoyuan He, and Xinyu Zhang. 2020. 3D Point Cloud

Generation with Millimeter-Wave Radar. Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol. 4, 4, Article 148 (Dec 2020), 23 pages.

https://doi.org/10.1145/3432221

[35] Hermann Rohling. 2011. Ordered Statistic CFAR Technique - An

Overview. In 2011 12th International Radar Symposium (IRS). 631–638.
[36] Nicolas Scheiner, Florian Kraus, Fangyin Wei, Buu Phan, Fahim Man-

nan, Nils Appenrodt, Werner Ritter, Jurgen Dickmann, Klaus Diet-

mayer, Bernhard Sick, and Felix Heide. 2020. Seeing Around Street

Corners: Non-Line-of-Sight Detection and Tracking In-the-Wild Using

Doppler Radar. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).

[37] D.M. Sheen, D.L. McMakin, and T.E. Hall. 2001. Three-Dimensional

Millimeter-Wave Imaging for Concealed Weapon Detection. IEEE
Transactions on Microwave Theory and Techniques 49, 9 (2001), 1581–
1592. https://doi.org/10.1109/22.942570

[38] Raffaele Solimene, Ilaria Catapano, Gianluca Gennarelli, Antonio Cuc-

caro, Angela Dell’Aversano, and Francesco Soldovieri. 2014. SAR

Imaging Algorithms and Some Unconventional Applications: A uni-

fied mathematical overview. IEEE Signal Processing Magazine 31, 4
(2014), 90–98. https://doi.org/10.1109/MSP.2014.2311271

[39] Quan Tang, Jun Li, Lingyu Wang, Yong Jia, and Guolong Cui. 2022.

Multipath Imaging for NLOS Targets Behind an L-Shaped Corner

With Single-Channel UWB Radar. IEEE Sensors Journal 22, 2 (2022),
1531–1540. https://doi.org/10.1109/JSEN.2021.3131665

[40] Deepak Vasisht, Swarun Kumar, and Dina Katabi. 2016. Decimeter-

level localization with a single WiFi access point. In Proceedings of the
13th Usenix Conference on Networked Systems Design and Implementa-
tion (Santa Clara, CA) (NSDI’16). USENIX Association, USA, 165–178.

[41] Andreas Velten, Thomas Willwacher, Otkrist Gupta, Ashok Veer-

araghavan, Moungi G Bawendi, and Ramesh Raskar. 2012. Recovering

three-dimensional shape around a corner using ultrafast time-of-flight

imaging. Nature communications 3, 1 (2012), 745.
[42] Samuel Viegas, João R. Reis, Telmo R. Fernandes, and Rafael F. S.

Caldeirinha. 2023. 4D MIMO Radar with 360º field of view: a practical

validation. In 2023 International Wireless Communications and Mobile
Computing (IWCMC). 757–762. https://doi.org/10.1109/IWCMC58020.

2023.10182690

[43] Jue Wang and Dina Katabi. 2013. Dude, where’s my card? RFID posi-

tioning that works with multipath and non-line of sight. In Proceedings
of the ACM SIGCOMM 2013 Conference on SIGCOMM (Hong Kong,

China) (SIGCOMM ’13). Association for Computing Machinery, New

York, NY, USA, 51–62. https://doi.org/10.1145/2486001.2486029

[44] Shunjun Wei, Jinshan Wei, Xinyuan Liu, Mou Wang, Shan Liu, Fan

Fan, Xiaoling Zhang, Jun Shi, and Guolong Cui. 2022. Nonline-of-

Sight 3-D Imaging Using Millimeter-Wave Radar. IEEE Transactions
on Geoscience and Remote Sensing 60 (2022), 1–18. https://doi.org/10.

1109/TGRS.2021.3112579

[45] Teng Wei, Anfu Zhou, and Xinyu Zhang. 2017. Facilitating Ro-

bust 60 GHz Network Deployment By Sensing Ambient Reflec-

tors. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). USENIX Association, Boston, MA, 213–

226. https://www.usenix.org/conference/nsdi17/technical-sessions/

presentation/wei-teng

[46] Timothy Woodford, Xinyu Zhang, Eugene Chai, and Karthikeyan

Sundaresan. 2022. Mosaic: Leveraging Diverse Reflector Geome-

tries for Omnidirectional Around-Corner Automotive Radar. In Pro-
ceedings of the 20th Annual International Conference on Mobile Sys-
tems, Applications and Services (Portland, Oregon) (MobiSys ’22). As-
sociation for Computing Machinery, New York, NY, USA, 155–167.

https://doi.org/10.1145/3498361.3538944

[47] Dianhan Xie, Xudong Wang, and Aimin Tang. 2022. MetaSight: Lo-

calizing Blocked RFID Objects by Modulating NLOS Signals via Meta-

surfaces. In Proceedings of the 20th Annual International Conference
on Mobile Systems, Applications and Services (Portland, Oregon) (Mo-
biSys ’22). Association for Computing Machinery, New York, NY, USA,

504–516. https://doi.org/10.1145/3498361.3538947

[48] Qian Yang, HengxinWu, Qianyi Huang, Jin Zhang, Hao Chen,Weichao

Li, Xiaofeng Tao, and Qian Zhang. 2023. Side-Lobe Can Know More:

Towards Simultaneous Communication and Sensing for MmWave.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6, 4, Article 191
(Jan 2023), 34 pages. https://doi.org/10.1145/3569498

[49] Keisuke Yoneda, Naoya Hashimoto, Ryo Yanase, Mohammad Aldibaja,

and Naoki Suganuma. 2018. Vehicle Localization using 76GHz Om-

nidirectional Millimeter-Wave Radar for Winter Automated Driving.

In 2018 IEEE Intelligent Vehicles Symposium (IV). 971–977. https:

//doi.org/10.1109/IVS.2018.8500378

[50] Shichao Yue, Hao He, Peng Cao, Kaiwen Zha, Masayuki Koizumi, and

Dina Katabi. 2022. CornerRadar: RF-Based Indoor Localization Around

Corners. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6, 1,
Article 34 (Mar 2022), 24 pages. https://doi.org/10.1145/3517226

[51] Wei Zhao and Rong Zheng. 2023. MARS: A MmWave Rotating Syn-

thetic Aperture Radar System for Indoor Imaging. In Proceedings of the
First ACM Workshop on MmWave Sensing Systems and Applications (Is-
tanbul, Turkiye) (mmWave ’23). Association for Computing Machinery,

New York, NY, USA, 8–13. https://doi.org/10.1145/3628357.3629709

[52] Yanzi Zhu, Yuanshun Yao, Ben Y. Zhao, and Haitao Zheng. 2017. Object

Recognition and Navigation Using a Single Networking Device. In Pro-
ceedings of the 15th Annual International Conference on Mobile Systems,
Applications, and Services (Niagara Falls, New York, USA) (MobiSys ’17).
Association for Computing Machinery, New York, NY, USA, 265–277.

https://doi.org/10.1145/3081333.3081339

[53] Yanzi Zhu, Yibo Zhu, Ben Y. Zhao, and Haitao Zheng. 2015. Reusing

60GHz Radios for Mobile Radar Imaging. In Proceedings of the 21st
Annual International Conference on Mobile Computing and Networking
(Paris, France) (MobiCom ’15). Association for Computing Machinery,

New York, NY, USA, 103–116. https://doi.org/10.1145/2789168.2790112

https://doi.org/10.1109/TCOMM.2022.3217564
https://doi.org/10.1109/TCOMM.2022.3217564
https://doi.org/10.1109/MSP.2016.2581206
https://doi.org/10.1109/RadarConf2043947.2020.9266489
https://doi.org/10.1109/ICRA48891.2023.10161429
https://doi.org/10.1145/3386901.3389031
https://doi.org/10.1145/3432221
https://doi.org/10.1109/22.942570
https://doi.org/10.1109/MSP.2014.2311271
https://doi.org/10.1109/JSEN.2021.3131665
https://doi.org/10.1109/IWCMC58020.2023.10182690
https://doi.org/10.1109/IWCMC58020.2023.10182690
https://doi.org/10.1145/2486001.2486029
https://doi.org/10.1109/TGRS.2021.3112579
https://doi.org/10.1109/TGRS.2021.3112579
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/wei-teng
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/wei-teng
https://doi.org/10.1145/3498361.3538944
https://doi.org/10.1145/3498361.3538947
https://doi.org/10.1145/3569498
https://doi.org/10.1109/IVS.2018.8500378
https://doi.org/10.1109/IVS.2018.8500378
https://doi.org/10.1145/3517226
https://doi.org/10.1145/3628357.3629709
https://doi.org/10.1145/3081333.3081339
https://doi.org/10.1145/2789168.2790112

	Abstract
	1 Introduction
	2 Related Work
	3 Single-Bounce FoV Limitations
	3.1 MIMO Radar System Model
	3.2 Single-Bounce Sensing Pipeline
	3.3 Single-Bounce Limits Sensing FoV

	4 System Design: Hydra
	4.1 Modeling Multi-Bounce Paths
	4.2 Multi-Bounce Spatial Matched Filtering
	4.3 Sequential Detection & Localization

	5 Performance Evaluation
	5.1 Implementation & Methodology
	5.2 Qualitative System Demonstration
	5.3 Overall System Performance
	5.4 Microbenchmark Evaluation

	6 Discussion & Limitations
	7 Conclusion
	Acknowledgments
	A Derivation of (6)
	B Proof of Lemma 4.1
	References

