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Abstract—A MUSIC-ML (MML) processing algorithm for 3-
dimensional localization of underwater acoustic sources using a
2-dimensional acoustic vector (AVS) array was proposed recently.
The MML processor performs source localization with high
accuracy and resolution. But the hardware and computational
complexity of the MML processor is very high. In this paper we
propose the use of compressive sampling of the AVS array output
in the spatial domain for reducing the processor complexity. It is
shown that a significant reduction in complexity with negligible
performance degradation can be achieved by using compressive
sampling. But complexity reduction by reducing the number
of sensors without compressive sampling leads to a significant
performance degradation.

Index Terms—Acoustic vector sensor, complexity reduction,
compressive sampling, MUSIC-ML processor, underwater acous-
tic source localization.

I. INTRODUCTION

Methods of localization of underwater acoustic sources

include the maximum likelihood (ML) technique [1], matched

field processing techniques such as the Bartlett and Capon

processors [2], or subspace techniques such as MUSIC [3].

Three-dimensional (3-D) localization requires the deployment

of a two-dimensional array (2DA) of hydrophones, composed

of a vertical linear array (VLA) for range-depth estimation

and a horizontal linear array (HLA) for bearing estimation

[4]. The ML technique is asymptotically efficient; but it is

highly computation-intensive, particularly in a non-Gaussian

noise environment that is frequently encountered in the ocean.

The MUSIC algorithm has lower complexity, but its perfor-

mance degrades rapidly as the signal-to-noise ratio (SNR) is

reduced. A new method called MUSIC-ML (MML), involving

a combination of MUSIC and ML, was proposed recently

[5]. It was shown that the MML processor has a better low-

SNR performance than MUSIC and lower complexity than

ML. It was also shown that a significant improvement in the

performance of the MML algorithm can be achieved if an

acoustic vector sensor (AVS) array is used to sample the acous-

tic field. An AVS has four collocated sensors which measure

the acoustic pressure p and three orthogonal components of

particle velocity (νx, νy, νz) at the same point in space. Hence,

an AVS is more informative than the conventional hydrophone

which measures the acoustic pressure only. Consequently, an

AVS array provides better localization performance than a

hydrophone array with the same number of elements. But

replacement of a hydrophone array by an AVS array entails a

major increase in complexity.

An N -element AVS array has 4N outputs. Each output is

connected to a separate receiver chain of frontend circuits

that perform the operations of amplification, down-conversion,

filtering, and analog-to-digital conversion on the received

analog signal and provides a digital output for further signal

processing. An HLA with a large number of elements N is

often used for high resolution bearing estimation which is

a critical requirement in many ocean acoustic applications.

The hardware complexity of the source localization processor

arises due to the presence of a large number of front end

circuit chains, and the high software complexity arises due to

the estimation algorithms involving manipulations of large-

size data matrices. It is known that compressive sampling

(CS) techniques can be used in array processing applications

to reduce both types of complexity while maintaining high

direction estimation accuracy and resolution [6]. Direction

estimation may be done either through CS recovery or by

applying an existing estimation technique such as MUSIC to

the compressed measurement vector. In this paper we present

a CS based MML algorithm for 3-D source localization in the

ocean using an AVS array. It is shown that the performance of

the proposed compressive MML (CMML) processor is almost

on par with the existing MML processor if the signal-to-noise

ratio (SNR) exceeds a certain threshold; but reduction in the

number of sensors without compressive sampling leads to a

significant performance degradation even at high SNR.

II. DATA MODELS

A. AVS-VLA

We shall model the ocean as a range-independent channel

composed of a water layer of constant depth h, density ρ, and

sound speed c, overlying a fluid bottom of density ρb, sound

speed cb, and absorption coefficient ǫ. This model is chosen for

the sake of computational simplicity; the analysis presented in

this paper can be readily extended to a horizontally stratified

ocean.

Consider an AVS-VLA of N sensors with uniform inter-

sensor spacing d. The nth element of the VLA is located at

zvn = zv1 + (n − 1)d, n = 1, · · · , N . Let J uncorrelated

sources be located at ξ = {xj = (uj , θj) = (rj , zj , θj)},

j = 1, · · · , J , in the far-field region of the 2DA, with ranges

rj , depths zj , and bearings θj , radiate narrowband signals

ηj(t) of center frequency f0 with means zero and variances σ2
j ,
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j = 1, · · · , J . We shall not consider the vertical component of

particle velocity vz measured by an AVS since the inclusion

of this measurement is found to increase the complexity of

the array processor without yielding any significant additional

improvement in performance. The output of the VLA at

discrete time t is therefore denoted by the 3N dimensional

data vector yv(t) = sv(t) +wv(t), where sv(t) is the signal

vector, wv(t) is the noise vector, and the subscript v denotes

VLA. The VLA data vector can be written as

yv(t) = [av(x1) · · ·av(xJ)]η(t)+wv(t), t = 1, · · · , L, (1)

where

av(xj) = [dv1(xj)
T · · · dvN (xj)

T
]T , j = 1, · · · , J, (2)

dvn(xj) = [pvn(xj)
√
2ρcvvxn(xj)

√
2ρcvvyn(xj)]

T , (3)

n = 1, · · · , N,
η(t) = [η1(t) · · · ηJ(t)], (4)

with av(xj) being the steering vector in the direction of

xj , and pvn(xj), vvxn(xj), vvyn(xj) denoting the complex

amplitudes of the acoustic pressure and horizontal (x, y)
components of particle velocity at the nth sensor of the VLA

due to a unit-strength source at xj . Using the normal mode

theory of sound propagation in the ocean, we can write [7]

av(xj) =
M∑

m=1

bm(uj)cv,m ⊗ vm(θj), (5)

bm(uj) =
ψm(rj)√
κmrj

exp (iκmrj − αmrj) , (6)

cv,m = [ψm(zv1) · · · ψm(zvN )]T , (7)

vm(θj) = [1
√
2
κm
κ0

cos(θj)
√
2
κm
κ0

sin(θj)]
T , (8)

where ψm(z), κm and αm respectively are the mode functions,

wavenumbers and attenuation coefficients of the mth normal

mode, κ0 = 2πf0/c,

M =

κ0h
π

√
1−

(
c

cb

)2

+
1

2

 , (9)

and ⊗ denotes the Kronecker product. It is assumed that the

noise vectors {wv(t), t = 1, · · · , L} are mutually independent

circularly symmetric complex Gaussian with mean zero and

covariance matrix σ2
w
I3N , and also independent of {η(t), t =

1, · · · , L}.

B. AVS-HLA

Consider an AVS-HLA of N sensors with uniform inter-

sensor spacing d, lying parallel to the x-axis at depth zh0 . The

first element of the HLA is the same as one of the elements of

the VLA, and the common element is the reference for range

measurement. Using the subscript h to denote all HLA related

quantities, we can write

yh(t) = [ah(x1) · · · ah(xJ)]η(t) +wh(t), (10)

ah(xj) =
M∑

m=1

bm(uj)ch,m(θj)⊗ vm(θj), (11)

ch,m(θj) = ψm(zh0)[1 e
igmj · · · ei(N−1)gmj ]T , (12)

gmj = κm cos(θj) (13)

It is assumed that the noise vectors {wh(t), t = 1, · · · , L} are

mutually independent circularly symmetric complex Gaussian

with mean zero and covariance matrix σ2
w
I3N , and also

independent of {η(t), t = 1, · · · , L}.

III. REVIEW OF MML METHOD

Three dimensional localization of multiple sources by the

MML method involves three stages of processing as described

below.

A. Generation of Range-Depth Candidate Pool

Consider the problem of estimating the source ranges and

depths {uj = (rj , zj), j = 1, · · · , J} by MUSIC. Computa-

tion of the 2-D MUSIC spectrum requires the knowledge of

the array steering vector at multiple locations on the range-

depth grid. For a source at location x = (u, θ), the steering

vector av(x) = av(u, θ), depends not only on range-depth u,

but also on bearing θ. For range-depth estimation without prior

knowledge of the source bearings, we employ the following

strategy. Split the 3N -dimensional data vector yv(t) defined in

(1)-(8) into three N -dimensional sub-vectors yv1, yv2, and yv3
corresponding to the p−, vx− and vy− channel measurements.

The sub-vectors are given by

yvi(t)=[av(x1) · · · av(xJ)]η(t) +wvi(t), i=1, 2, 3, (14)

av1(xj) = âv1(uj) =
M∑

m=1

bm(uj)cv,m (15)

av2(xj) =
M∑

m=1

(
κm
κ0

)
bm(uj)cv,m cos(θj) (16)

av3(xj) =
M∑

m=1

(
κm
κ0

)
bm(uj)cv,m sin(θj) (17)

and {wvi(t), i = 1, 2, 3} are N -dimensional sub-vectors of

wv(t). Let

R̂vi =
1

L

L∑

t=1

yvi(t)y
H
vi(t) (18)

denote the sample correlation matrices of the data sub-vectors

yvi(t). Since the steering vectors {avi(x), i = 1, 2, 3} are

highly correlated, we can use the approximation

av3(x)≈av2(x)≈av1(x)=âv1(u)≡âv2(u)≡âv3(u) (19)

Thus, we can construct the following 2D-MUSIC spectrum

from the data sub-vectors:

Bv(u) =
3∑

i=1

1

âH
v1(u)ENviE

H
vi âv1(u)

(20)



where ENvi is the noise subspace matrix obtained from the

eigendecomposition of R̂vi. The J tallest peaks of Bv(u)
are expected to provide estimates of {uj , j = 1, · · · , J}. In

practice,large estimation errors may occur sometimes because

one or more peaks corresponding to the true source positions

are dwarfed by a large sidelobe. To avoid such errors, we

form a candidate pool of range-depth estimate by selecting

the arguments of the J ′ > J tallest peaks of Bv(u). The

size of the pool should be large enough to ensure that all true

range-depth estimates are included in the pool. We have per-

formed extensive simulations to conclude that this condition

is satisfied if J ′ ≈ 3J . A method of obtaining source position

estimates by weeding out the false peaks from the range-depth

candidate pool is presented in the following sub-section.

B. Range-Depth Estimation

Let the locations of the J ′(≈ 3J) tallest peaks of Bv(u) be

denoted by {ũj , j = 1, · · · , J ′}. For each of these J ′ range-

depth pairs, we estimate the bearing by 1-D MUSIC. Thus we

have

θ̃vj = argmax
θ

{
B(j)

v (θ|ũj)
}
, j = 1, · · · , J ′ (21)

B(j)
v (θ|ũj) =

1

aH
v (ũj , θ)ENvE

H
Nvav(ũj , θ)

. (22)

Let x̃j , (ũj , θ̃vj). Each vector composed of J elements of

the set {x̃1, · · · , x̃J ′} is a candidate for the joint estimate of

the location of J sources. The total number of candidates is

K =
(
J ′

J

)
. Let these candidates be denoted by

ξi = [x̃i1 · · · x̃iJ ], i = 1, · · · ,K. (23)

Let

Ãvi = [av(x̃i1) · · · av(x̃iJ )] (24)

be the steering-vector matrix for the ith candidate ξi. The

matrix Ãvi(Ã
H
viÃvi)

−1ÃH
vi is the orthogonal projection ma-

trix onto the ith candidate signal subspace Si = span

{av(x̃i1) · · · av(x̃iJ )}. Consider the projection spectrum

Pv(ξi) = trace(Ãvi(Ã
H
viÃvi)

−1ÃH
viR̃v), i=1, · · · ,K. (25)

We note that each element of the set {ξi : i = 1, · · · ,K} is

a point in a 3J-dimensional space. The joint ML estimate of

the location of all sources is given by

ξ̂v = (û1, θ̂v1, · · · , ûJ , θ̂vJ) = argmax
i

Pv(ξi) (26)

The procedure outlined above is rather computation-intensive

since it involves multiple maximizations of the MUSIC spec-

trum in (22). In order to reduce the computational load, a

coarse search grid of size 3 degrees is used for obtaining the

bearing estimates θ̃vj in (21), since high bearing-estimation

accuracy is not required for the joint range-depth estimates

obtained from the maximization of (26). After obtaining the

range-depth estimates {ûj , j = 1, · · · , J} using the method

described above, more accurate bearing estimates are obtained

using the HLA data as explained below.

C. Bearing Estimation

For obtaining improved bearing estimates, we use a mod-

ified version of the MML method used for range-depth es-

timation in Sections III-A and III-B. We use the HLA data

{yh(t), t = 1, · · · , L} to compute the 1-D MUSIC spectrum

corresponding to the range-depth estimate ûj of each source.

Thus we have

B
(j)
h (θ)=

1

aH
h (ûj , θ)ENhE

H
Nhah(ûj , θ)

, j=1, · · · , J. (27)

where ah(ûj , θ) is the steering vector of the AVS HLA and

ENh is the noise subspace matrix obtained from the eigen

decomposition of the HLA data sample correlation matrix R̂h

defined as

R̂h =
1

L

L∑

t=1

yh(t)y
H
h (t). (28)

It is found that, for each j ∈ {1, · · · , J}, B
(j)
h (θ) has

large peaks of comparable magnitudes close to all {θj , j =
1, · · · , J}, and also some randomly located large false peaks.

To overcome the resultant ambiguity, we define the spectrum

Bh(θ) =
J∑

j=1

1

aH
h (ûj , θ)ENhE

H
Nhah(ûj , θ)

, (29)

and consider the set of the tallest J ′′(≈ 3J) peaks of Bh(θ)
denoted by θ̄j , j = 1, · · · , J ′′. The range-depth estimate ûj of

each source can be paired with any of the θ̄j , j = 1, · · · , J ′′.

Therefore, the total number of candidates for the joint estimate

of the location of sources is K̄ = J ′′(J ′′−1) · · · (J ′′−J+1),
assuming that the sources have distinct bearings. Let these

candidates be denoted by

ξ̄i = [û1, θ̄i1 , · · · , ûJ , θ̄iJ ], i = 1, · · · , K̄ (30)

Let

Āhi = [ah(û1, θ̄i1) · · · ah(ûJ , θ̄iJ )] (31)

be the steering vector for ξ̄i. The matrix Āhi(Ā
H
hiĀhi)

−1ĀH
hi

is the orthogonal projection matrix onto the ith candidate

signal subspace S̄i = span{ah(û1, θ̄i1) · · · ah(ûJ , θ̄iJ )}.

Consider the spectrum

Ph(ξ̄i)=trace(Āhi(Ā
H
hiĀhi)

−1ĀH
hiR̂h), i=1, · · · , K̄. (32)

The joint ML estimate of the location of all sources is given

by

ξ̂2DA = (û1, θ̂1, · · · , ûJ , θ̂J) = argmax
i

Ph(ξ̄i). (33)

The final bearing estimates are {θ̂j , j = 1, · · · , J}.



IV. LOCALIZATION BY COMPRESSIVE SAMPLING

A. Compressive Sampling

The purpose of compressive sampling (CS) is to mitigate

the complexity of the processor used for source localization.

In the CS framework, the analog signal received by the 3N
channels of an N -sensor AVS array is compressed in the

analog domain and then passed through a fewer number of

front-end circuit chains to obtain the digital baseband signal

for further processing [6]. Hence, compressive sampling is

equivalent to applying a compression matrix Φ ∈ C
M×3N ,

with M < 3N , to the 3N -dimensional data vector y(t) to

generate the compressed M -dimensional measurement vector

z(t) = Φy(t). We can write

y(t)=[a(x̄1) · · · a(x̄K)]ζ(t) +w(t)=Āζ(t) +w(t), (34)

for t = 1, · · · , L, where ζ(t) ∈ C
K is a sparse signal

vector with J non-zero elements, K > 3N and K ≫ J ,

where J is the number of sources located at {x1, · · · ,xJ}
⊆ {x̄1, · · · , x̄K}. The support of ζ(t) is the same for t =
1, · · · , L. Thus, we have

z(t)=ΦĀζ(t)+Φw(t)=Ψζ(t)+v(t), t = 1, · · · , L. (35)

We have chosen the elements of Φ to be independent samples

of a complex circular Gaussian random variable, but other

choices are possible according to the CS theory. The compres-

sive sampling AVS array architecture is as shown in Figure 1.

The problem of localization may be solved by recovering the

support of the sparse signal vector ζ(t) from the compressed

measurement vectors {z(t), t = 1, · · · , L}. It is known that

exact recovery of ζ(t) is possible if noise v(t) = 0 and the

matrix Ψ ∈ C
M×K satisfies the restricted isometry property

(RIP) or the computationally verifiable mutual incoherence

property (MIP [8]. The mutual coherence of Ψ is defined as

µ = max
i6=j

∣∣ψH
i ψj

∣∣ , (36)

where ψi is the ith column of Ψ. A sufficient condition

for perfect recovery is µ < 1
2J−1 . In general, K should be

sufficiently small and/or M should be sufficiently large for

satisfying the MIP condition. On the other hand, we need a

large value of K for achieving high bearing resolution, and

a small value of M for complexity mitigation. In the case

of noisy measurements, the probability of perfect recovery

reduces as the noise intensity is increased. In this paper,

localization by CS recovery is not considered. We seek to solve

the localization problem by applying the MML algorithm to

the compressed measurement vectors {zv(t) = Φvyv(t) =
Φhyh(t)}, derived from an AVS VLA of Nv sensors and

an AVS HLA of N sensors. But the conditions for perfect

recovery mentioned above play an important role in the choice

of the parameters K and M .

B. Range-Depth Estimation

Before considering compressive sampling, we shall illustrate

the range-depth estimation performance of the MML processor

using an AVS VLA of Nv sensors. Consider a Pekeris channel
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RF Frontend

RF Frontend

RF Frontend

Σ
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Σ
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3D Data
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3D Data

Vector

3D Data

Vector

Digital
SignalAnalog

Signal

Compressive sampling

1
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Fig. 1: Compressive sampling AVS array architecture

with the following parameters: depth h = 100 m, sound speed

in water c = 1500 m/s, sound speed in bottom cb = 1700
m/s, density ratio ρb

ρ
= 1.5, and bottom attenuation coefficient

ǫ = 0.2 dB/λb (where λb is the acoustic wavelength in the

ocean bottom). The signal frequency is f0 = 200 Hz. The

Kraken normal mode program [9] is used to compute the

modal eigenfunctions, wavenumbers, and attenuation coeffi-

cients, ψm(z), κm, and αm. We consider two uniform VLAs,

one with Nv = 20 sensors, and the other with Nv = 9
sensors. For both arrays, the depth of the topmost sensor

is zv1 = 5 m and the array length is 76 m. We consider

three sources whose coordinates are independent samples of

uniformly distributed random variables, rj ∼ U(4 km, 7 km),
zj ∼ U(10 m, 100 m), and θj ∼ U(0◦, 360◦), subject to the

constraint that the separation between sources is not less than

40 m in range, 4 m in depth and 10 degrees in bearing.

Signals received from different sources have the same signal-

to-noise ratio (SNR) at the receiver array. Only the pressure

components of the signal and noise at each AVS are considered

for computing the SNR. The SNR (in dB) of the jth source

is defined as

(SNR)j = 10 log10

(∑N
n=1 |pnj |2
Nσ2

w

)
, (37)

where pnj is the acoustic pressure at the nth sensor due to the

jth source. Simulation results comparing the performances of

the two arrays, obtained from L = 100 snapshots, are shown

in Figs. 2 and 3. These figures show plots of average root-

mean-square errors (ARMSE) of range and depth estimates

with respect to SNR. The ARMSE is defined as

ARMSE(range) =
1

J

J∑

j=1

√√√√
S∑

s=1

1

S
(r̂

(s)
j − r

(s)
j )2, (38)

where r
(s)
j and r̂

(s)
j are the true and estimated values of the

range of the jth source in the sth Monte Carlo simulation.

ARMSE(depth) and ARMSE(bearing) are defined in a similar

fashion. The results in this figure and all subsequent figures

are obtained from S = 500 Monte Carlo simulations. It

is evident from Figs. 2 and 3 that pretty good range-depth

estimates can be obtained even with a VLA with the relatively
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Fig. 2: Plots of ARMSE vs. SNR for range estimation by

MML method, for three sources at random locations.
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Fig. 3: Plots of ARMSE vs. SNR for depth estimation by

MML method, for three sources at random locations.

small number of 9 sensors. Similar plots for the case of

two sources at fixed positions, viz. (3000 m, 25 m, 75◦) and

(5200 m, 75 m, 125◦), are shown in Figs. 4 and 5. In this case,

the ARMSE values are lower at low SNR (< −8 dB) for

two reasons: (1) the number of sources is less, and (2) the

possibility of low estimation accuracy due to the placement of

a source at an unfavorable position is avoided.

Table I presents a comparison of hardware and computa-

tional complexity for acoustic pressure sensor (APS), AVS,

and compressively sampled AVS (CS-AVS) arrays with N
sensors. It is seen that significant reduction in complexity is

achieved if N is large. There is little scope for complexity

mitigation by compressive sampling for a 9-sensor AVS VLA.

We shall therefore restrict the application of compressive

MML (CMML) to the problem of bearing estimation by AVS

HLA.
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Fig. 4: Plots of ARMSE vs. SNR for range estimation by

MML method, for two sources at fixed locations.
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Fig. 5: Plots of ARMSE vs. SNR for depth estimation by

MML method, for two sources at fixed locations.

C. Bearing Estimation

For bearing estimation we consider an AVS HLA of N =
20 sensors. Each snapshot of the HLA data vector yh(t) of

3N = 60 elements is compressed to a measurement vector

zh(t) = Φhyh(t) of M = 3Nc elements, Nc < N . First, we

consider 3 sources at random locations as described in Section

IV-B. The signals from the three sources have equal SNR at the

receiver. The compressive MML (CMML) processor is used

for bearing estimation. Plots of ARMSE(bearing) vs. SNR for

three different values of Nc, viz., Nc = 3, 6, 9 are shown

in Fig. 6. The range-depth estimates required for the bearing

estimation are obtained by the MML algorithm using an AVS

VLA of (a) 20 sensors, and (b) 9 sensors. Results similar to

those in Fig. 6, for the case of two sources at the fixed locations

of (3000 m, 25 m, 75◦) and (5200 m, 75 m, 125◦), are shown

in Fig. 7. Once again, it is seen that the ARMSE values are



Array type APS AVS CS-AVS

Number of channels N 3N J log(3N)
Signal acquisition hardware N 3N J log(3N)
Correlation matrix size N ×N 3N × 3N J log(3N)× J log(3N)
Matrix inversion complexity O(N3) O((3N)3) O((J log(3N))3)
Eigendecomposition complexity O(N3) O((3N)3) O((J log(3N))3)
Maximum number of snapshots N 3N J log(3N)

TABLE I. Comparison of complexity for different arrays with N sensors.
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Fig. 6: Plots of ARMSE vs. SNR for bearing estimation by

CMML (N = 9) method for different values of Nc, for

three sources at random locations. Range-depth estimates were

obtained by MML method using (A) 20-sensor VLA, (B) 9-

sensor VLA.

lower at low SNR (< −8 dB) for reasons set out in Section

IV-C.

The bearing estimation performances of CMML with N =
20, Nc = 9, MML (N = 20), and MML (N = 9), for 3
sources at random locations, are compared in Figs. 8 and 9.

Figure 8 shows the variation of ARMSE with SNR for 200
snapshots, and Fig. 9 shows the variation of ARMSE with the

number of snapshots at −8 dB SNR. It is seen from these

figures that the performance of CMML (N = 20, Nc = 9)
is very close to that of MML (N = 20) for SNR > −11
dB. But the ARMSE is much higher for MML (N = 9).
Hence we conclude that (a) significant reduction in complexity

with negligible performance degradation can be achieved by

using compressive sampling, and (b) reduction in the number

of sensors without compressive sampling leads to a significant

performance degradation even at high SNR.

V. CONCLUSION

Three dimensional localization of underwater acoustic

sources can be done with high resolution and accuracy by the

MML processor using data measured by an AVS 2DA, com-

posed of an AVS VLA for range-depth estimation and an AVS
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Fig. 7: Plots of ARMSE vs. SNR for bearing estimation by

CMML method for different values of Nc, for two sources at

fixed locations. Range-depth estimates were obtained by MML

method using (A) 20-sensor VLA, (B) 9-sensor VLA.
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Fig. 8: Plots of ARMSE vs. SNR for bearing estimation of 3

sources at random locations by CMML (N = 20, Nc = 9),
MML (N = 20) and MML (N = 9) methods.
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Fig. 9: Plots of ARMSE vs. number of snapshots for bearing

estimation of 3 sources at random locations by CMML (N =
20, Nc = 9), MML (N = 20) and MML (N = 9) methods.

HLA for bearing estimation. This processor has a high level

of hardware and software complexity because (1) each AVS

acquires data on three channels, and (2) the HLA should have a

large number of sensors to achieve high bearing resolution. In

this paper we have proposed the use of compressive sampling

of the AVS HLA output in the spatial domain for reducing the

processor complexity. We have presented simulation results to

illustrate the performance of the compressive MML processor.

We have considered compression of the 60-dimensional data

vector at the output of a 20-sensor AVS HLA to a 27-

dimensional vector (equivalent to an AVS HLA of 9 sensors).

It is shown that the performance of the MML processor for

bearing estimation of 3 randomly placed sources using the

compressively sampled data is very close to that of the MML

processor using the original 20-sensor data, for SNR above

−11 dB. At higher SNR, complexity can be reduced further

by increasing the compression ratio, without compromising

the performance. But the performance of the MML processor

using uncompressed data at the output of a 9-sensor AVS HLA

is significantly inferior even at high SNR.
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