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Figure 1. Given synchronized measurements from a mmWave radar and RGB camera, we learn a spectral field model for rendering
“superresolution” radar reflectance (top right), which has higher fidelity and interpretability than the input radar sequence (bottom left).

Abstract

Radars are an ideal complement to cameras: both are
inexpensive, solid-state sensors, with cameras offering fine
angular resolution, while radars provide metric depth and
robustness under adverse weather. However, radar data is
more difficult to interpret than camera images and varies
significantly between sensors, necessitating increased re-
liance on simulation for prototyping sensors and processing
pipelines. Recent work treating radar reconstruction as a
novel view synthesis problem has shown great promise in
reconstructing radar-relevant geometry and simulating low-
level radar data. However, such methods are constrained
by the low spatial resolution of the underlying radar. To
address this, we propose a unified differentiable renderer,
RadarSim, which leverages the high angular resolution of

RGB cameras to generate Doppler radar range images from
a camera-initialized neural field. Using a novel data set of
calibrated radar camera recordings from a custom hand-
held rig, we demonstrate that RadarSim produces sharper
geometry and Doppler range frames than radar-only recon-
structions.

1. Introduction
Low-resolution single-chip mmWave radars are widely used
in driver assistance [42, 54], collision avoidance [22], agri-
culture [48], and smart homes [55] due to their low cost,
robustness, and ability to measure absolute range. How-
ever, unlike camera images or Lidar depth maps, raw range-
Doppler radar data are difficult to interpret in 3D due to angu-
lar ambiguity and cross-bin effects like side lobes and bleed



[28]. Additionally, radar data are heavily sensor-dependent,
making it impractical to test or train radar processing al-
gorithms on generic datasets, unlike camera-based models
using internet-sourced images. To address these challenges,
many radar reconstruction techniques extract radar-relevant
geometry from multiple radar scans [9, 25–27], while radar
simulations [2, 19, 46, 47] help simulate new sensors, test
algorithms, and augment datasets [5].

Vision-as-inverse graphics approaches inspired by Neu-
ral Radiance Fields [33] have shown great promise as data
simulators. These approaches [6, 21] unify 3D reconstruc-
tion and simulation as a novel view synthesis problem, and
can accurately recover high-resolution radar geometry and
simulate radar scans. However, these methods rely solely on
radar data, which has inherently low spatial resolution. This
limitation prevents the capture of fine geometric details, lead-
ing to blurred reconstructions and a loss of intricate features
that cameras or LiDAR can easily capture, thereby limiting
their suitability for high-fidelity novel view synthesis. As
a result, while radar-relevant geometry can be recovered,
overall quality remains inferior to the state-of-the-art camera
and LiDAR-based techniques [20, 33].

To bridge the gap between radar and camera-based re-
construction, we propose RadarSim, a unified differentiable
renderer that combines radar’s depth sensing with the high
spatial resolution of cameras. It employs a differentiable
multimodal scene representation to generate mmWave range
Doppler frames with geometry initialized from a pretrained
RGB neural field for enhanced detail.

Key challenges. While mmWave radars and RGB cameras
largely share the same underlying spatial geometry, their
properties can differ significantly. Radars process electro-
magnetic spectra at millimeter wavelengths, while visible
light consists of spectra at nanometer wavelengths. This
can cause dramatic differences in wave propagation across
space and wave reflection at surfaces. For instance, mmWave
radars perceive glass as opaque but see plastic bodywork and
thin walls as transparent. Thus, radar-camera reconstruc-
tion must align their shared geometry while allowing for
modality-specific differences. Our key insight is that radar
field geometry can be initialized and regularized with camera-
field geometry (learned from a pre-trained RGB neural field).
This allows our approach to preserve fine details provided by
camera while accurately simulating radar measurements, en-
suring high-resolution reconstruction with radar-consistent
depth. Moreoever, surfaces tend to appear more specular
under the large wavelengths of radar, which is often man-
ifested as view-dependant retro-reflection (Fig. 2). This
provides an additional opportunity for information sharing:
by representing the radar’s view-dependence using a Bidirec-
tional Reflectance Distribution Function (BRDF) relative to
a (learned) surface normal, RadarSim can more accurately
represent retro-reflective surfaces.

Dataset Radar Type Raw Data Varying View Dir.

RadarSim (Ours) Low Res Yes Yes
RADDet [58] Low Res Yes No
RADIal [43] High Res Yes No
K-radar [38] High Res Yes No
Coloradar [24] High Res Yes Yes
RaDICal [29] Low Res Yes No

Table 1. Comparison with other RGB + mmWave radar datasets
with raw data. We capture a dataset using a low-resolution single-
chip radar and cover scene content from multiple views directions
and positions.

Contributions. We propose RadarSim, the first multi-
modal neural field to combine radar with RGB modality
in a unified framework. Our contributions are as follows:
(1) We introduce a camera-radar based framework that

leverages camera geometry as a prior to learn radar-
specific geometric properties (Sec. 3.2). We also pro-
pose a camera-initialized proposal network for radar
ray-tracing which allows RadarSim to focus on surfaces
and correctly model radar’s ability to see through some
camera-opaque materials (Sec. 3.3).

(2) Unlike prior work, we also model radar’s specular
retroreflectance using a novel BRDF-based encoding
with learned surface normals, which provides further
information sharing between camera and radar geometry
(Sec. 3.4).

(3) We introduce a LiDAR-free metric scale optimization
method that refines scale-less COLMAP-derived camera
poses by leveraging structural cues from radar’s range-
Doppler data, ensuring accurate multimodal alignment
and eliminating the need for expensive LiDAR calibra-
tion.

(4) Finally, due to a lack of multimodal camera-radar
datasets catered toward low-cost (i.e., low-resolution)
radars and multiview settings (see Tab. 1), we intro-
duce a new radar-camera dataset and demonstrate that
our multimodal architecture improves radar novel view
synthesis both qualitatively and quantitatively, while
also enhancing density estimation of occluded surfaces
(Sec. 4).

2. Related Works
Data-driven radar simulation. While there exist model-
based simulators [2, 8, 10, 16, 19, 31, 46, 47, 52] that simu-
late radar signals based on a known environment, we focus
on data-driven radar simulation methods that infer environ-
ments from real radar measurements. Sparse methods detect
individual reflectors using CFAR (constant false alarm rate)
techniques [11, 34, 45]. In contrast, dense methods represent
the environment as a voxel grid, estimating radar properties
for each cell. These dense methods can be either coherent
(e.g., using Synthetic Aperture Radar [32, 35, 39, 41, 56, 57]
with precise motion or fixed paths) or incoherent [25–27]
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Figure 2. (a) RadarSim uses volumetric radar reflectance and occupancy models to render a high resolution radar reflectance image.
Importantly, it initializes (and regularizes) the radar occupancy model to be similar to a pre-trained RGB-NeRF occupancy model. (b)
left: To better model radar reflectance, we repurpose classic specular reflectance models (e.g. Phong shading [14]), where the strength
of the viewed specularity depends on the angle between the viewing direction and the reflected light source (reflected about the surface
normal). (b) right: Radars make use of co-located transmitters and receivers, implying the brightness of specular retro-reflectors will be
determined by the angle between the viewing direction and surface normal. (c) We show BRDF basis functions used to capture the degree of
view-dependant retroreflectance given by a "roughness" value ρ; for large ρ, there is little view-dependance, implying the surface has the
same radar reflectance regardless of viewing angle.

(aggregating data without phase alignment). While SAR pro-
vides high resolution, it’s typically unsuitable for large-scale
mobile applications. Instead, incoherent aggregation—such
as multi-view 3D reconstruction or radargrammetry offers a
practical alternative by combining measurements from dif-
ferent views or sub-trajectories. Recently, deep learning
based approaches such as [7, 13] learn generative models
that simulate radar measurements from learnt radar data dis-
tributions. While fast, scalable and realistic, they are far less
accurate than multi-view reconstruction based approaches
which aggregate real measurement in the scene to simulate
new views.

Neural fields for radar. While originally developed for
photorealistic camera novel-view-synthesis, the neural-
implicit inverse rendering approach pioneered by Neural
Radiance Fields (NeRFs) [33] has also been extended to the
radar domain. For example, DART [21] proposes a NeRF-
like approach to simulate low-resolution mmWave radars
in the range-Doppler domain using a multi-view sequence.
Neural fields have also been proposed for other radar appli-
cations such as mechanical radars used in robotics and some
autonomous vehicles [6] and synthetic aperture radars in in
aerospace and remote sensing [12, 30].

Multimodal neural fields. In addition to radar, NeRF-like
approaches have also been applied to a wide variety of do-
mains such as RSSI [59], imaging sonar [40, 44] and Lidar
[20]. Beyond single modalities, many have also proposed
to incorporate different sensor modalities into a single neu-
ral field with conventional RGB cameras, including Lidar
[18, 51, 60], thermal or infrared cameras [17, 37], and even
language embedding semantics using a camera-like render-

ing model [3, 23].
Crucially, existing NeRF+X multimodal models all seek

to fuse conventional image-based NeRFs with other modal-
ities which also share a similar ray-based rendering model.
This is not the case for radar: unlike cameras (or Lidar),
whose sensor model has range ambiguity, radars trade abso-
lute range resolution for angular ambiguity, resulting in an
orthogonal sensor model [21].

3. Method
RadarSim builds upon DART [21], which can be viewed as
a modification of implicit neural rendering engines (NeRF
[33]) for radar. Intuitively, one can view RadarSim as a
unification of DART (for radar) and NERF (for RGB); given
a static scene captured by synchronized radar and camera
measurements, we learn a unified neural field that stores
volumetric quantities that enable rendering of both RGB
and radar (range-Doppler) views. However, combining both
modalities is challenging. Modeling radar requires funda-
mentally different sampling strategies, since range Doppler
“pixel" measurements are generated by integrating along a
circle in space rather than a ray (since radar waves propagate
radially rather than along rays). Because of the differences
in transmissive properties for radio waves and visible light,
related but different geometric terms are required for camera
and radar.

To capture such differences in a unified architecture, we
learn a neural field for radar measurements with the help of
information learnt from camera data as a regularizer. Specifi-
cally, from a pre-trained camera-only neural field, we initial-
ize a geometry encoder for radar as well a proposal network
for generating samples for radar ray-tracing. We model radar
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Figure 3. Novel view synthesis for DART [21] and Radarfields [12] (middle) versus RadarSim (bottom). Since DART and Radarfields
are based solely on radar data, it is limited in spatial, azimuth and elevation resolution and fine-detail. Specifically, they lack the ability to
resolve reflectors at different heights because both doppler-range integration (DART) and range integration (Radarfields) still suffer from
height ambiguity given limited data. In contrast, RadarSim combines radar with RGB camera data, and so captures sharper geometric details
while faithfully recovering radar reflectance. In particular, RadarSim models radar’s characteristic retro-reflectance (Fig. 2) as indicated by
the strong responses for surfaces who’s normal aligns with the camera-view (e.g., the rear of the truck), metallic surfaces, as well as concave
structures like bottom of the car and corners.

reflectance with an MLP conditioned on learnt camera-based
geometry embedding for learning high-frequency spatially
varying details. Finally, because radar tends to reflect across
metallic surfaces with strong view-dependence, we model
the specular reflection (that depends upon both the viewing
direction and surface normal) via BRDF basis functions, re-
purposing techniques from implicit BRDF modeling [53] for
capturing radar retro-reflectance.

3.1. Background: NeRF and DART

Since RadarSim is an integration of these two frameworks,
we begin by providing a unified overview of DART and
NeRF; for additional details, we refer the reader to the origi-
nal references [21, 33].

NeRF. NeRFs learn an implicit neural field that can be
used to differentiable render an image (or 2D pixel grid)
by integrating volumetric radiance (or color) c(x,ω) ∈
[0, 1]3 and density σ(x) ∈ R for each 3D point x and view
direction ω along pixel-aligned ray Y [33]:

C(i,w) = c(xi,w)α(xi)
∏
j<i

(1− α(xj)),Y =
∑
i

C(i,w)

(1)

where α ∈ [0, 1] are alpha-compositing weights equal to(
1− exp−σ(xi)δi

)
and δi is the distance between adjacent

samples on a ray.

DART. Similarly, DART learns an implicit neural field that
can be used to render radar measurements, which are natu-
rally represented as a 3D cube of range, speed (or Doppler),
and angle (or antenna) measurements. To do so, DART
integrates volumetric reflectance s(x,ω) ∈ R and transmit-
tance t(x,ω) ∈ [0, 1], capturing the proportion of energy
that reflects back and that continues past a point x. These
quantities can be used to model the radar return amplitude at
point sample xi = x+ riω observed by a radar at position
x with antenna k, written as C(i, k, ω):

C(i, k,ω) =
gk
r2i

s(xi,ω)
∏
j<i

t(xj ,w)2, (2)

where i is a discrete range bin. Compared with (1), trans-
mittance can be seen as 1 − α, but is squared since the
radar signal is attenuated twice along the ray, during both
the outgoing and and incoming directions after reflection.
The additional inverse squared fall-off captures the radio-
metric reduction of energy in the reflected signal, while the
antenna-dependent gain factor gk captures the dependence
of the observed signal on the orientation of radar array.

Importantly, instead of accumulating values along a ray,
we must generate (or “render") range-Doppler measure-
ments, where the Doppler velocity of an object is its relative
radial velocity. In particular, the apparent Doppler of a static
point with viewing angle w captured by a moving radar with
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Figure 4. Simulating unseen antennae. RadarSim can generate
novel-views with modified “intrinsics" that capture novel config-
urations of antennae. Here, we train RadarSim on the first 4 of 8
available antennae and generate renderings of the last 4, comparing
them to held-out ground-truth antennae observations. We visualize
2 of the 4 unseen antennae in this figure. RadarSim’s renderings
are sharper and closer to the ground truth. Fig. 5 uses the same
approach to generate simulations of 128 antennae, to increase the
angular azimuthal resolution of the radar.

velocity v is ⟨w,v⟩: points directly in front have an appar-
ent speed of −||v||, but those off-center will have a cosine
fall-off. Thus, to render a particular “pixel" for range ri and
Doppler dj , we integrate samples that lie at the intersection
of a cone of directions w (given a particular cosine fall-off
of dj = ⟨w,v⟩) with a sphere of radius ri. Geometrically,
this intersection is a circle in 3D [21]:

Y (ri, dj , k) ∝
ri

||v||2

∫
⟨w,v⟩=dj , ||w||2=1

C(i, k,w) dw (3)

where the additional factors correct for the varying width of
the spherical (range-Doppler) bins.

3.2. Sharing Geometry

Given our background models, we can now define our
RadarSim architecture. Succinctly, we build a unified im-
plicit neural field that generates volumetric geometry and
reflectance quantities needed to render range-Doppler sensor
measurements from a camera-only neural field. Two base-
lines (to which we compare in our ablations) are learning
two separate neural fields with no sharing, as well as learning
a single geometric neural field that is “fully-shared" across

camera and radar. The former does not allow radar to benefit
from cameras, while the latter does not model the fact that
geometric transmission is different across the two modalities.
Instead, we first train a camera-only neural field and learn a
radar geometry encoder that is regularized to be similar (but
not identical) to camera geometry. But to do so, we recon-
cile an inconsistency between the two formulations: unlike
NeRF (Eq. 1), which fully separates geometry and radiance,
DART implicitly captures scene geometry in its reflectance
s(xi,ω) as well (Eq. 2). Similar to other neural rendering
approaches for active sensors [1], we separate reflectance
into a geometry-independent reflectance term cr(x,ω) that
captures how much energy is reflected (akin to radiance in
NeRF) and a geometric-only term capturing radar-specific
density αr(x) that is equivalent to 1− t(x,ω). This allows
us to rewrite Eq. 2 in a form analogous to Eq. 1:

C(i, k,w) =
gk
r2i

cr(xi,w)αr(xi)
∏
j<i

(1− αr(xj))
2, (4)

Geometry encoder. Given the modified formulation above,
we now define our shared geometry encoder. We learn two
neural fields for camera and radar:

(αc(xi), lgeoc) = fgeoc(xi; θgeoc) (5)

(αr(xi), lgeor ) = fgeor (xi; θgeor ) (6)

in the form of multi-resolution hash tables [36] that store
geometry codes lgeoc and lgeor and capture geometric prop-
erties for camera and radar respectively. These codes are
MLP-decoded into radar density αr(x) and camera density
αc(x), respectively. The density heads are implemented
as linear layers atop a shared MLP decoder. We first train
fgeoc with camera data, and distill fgeoc into fgeor by ini-
tializing θgeor with θgeoc . Then θgeoc is frozen and θgeor is
fine-tuned with radar data while constrained through a binary
cross entropy loss between αr(xi) and αr(xi).

3.3. Radar Ray Sampling

Performance of state-of-the-art NeRF architectures such as
[4] can be attributed to efficient importance sampling on ray-
surface intersections. Extending on the proposal network
used in [49][4] that generates samples from density stored
in a light weight network self-supervised by the rendering
weight of NeRF, we propose to share the proposal network
between radar and camera and fine-tune a pre-trained pro-
posal network for camera with rendering weight distribution
of radar. While in DART [21], samples on radar rays are
generated linearly according to range bins, we generate sam-
ples based on the sampling distribution from the proposal
network, and query fgeor and fradar to obtain αr and cr for
each sample on a ray. In case there are multiple samples
assigned to a particular range bin, we aggregate the samples



by taking the mean of the sample values; and if there are no
samples, we assign 0 for αr and cr. We show the effect of
such shared sampling scheme in geometry improvement for
radar in Fig. 9 and reconstruct geometry behind occluded
surface in Fig. 8.

3.4. BRDF Encoding

We now describe improvements to our radar reflectance
model cr(xi,w) that leverage improved estimates of geom-
etry. Our motivation is that many metallic surfaces appear
highly specular under radar due to its large wavelength, a
phenomena sometimes known as retroreflectance. Our key
insight here is to repurpose innovations from the NeRF lit-
erature on capturing surface reflectance models (BRDFs),
to better model retroreflectance common in radar sensing.
To do so, we augment our model to explicitly reason about
surface normals and surface roughness.

Surface normals. While normal maps could be derived
by computing the spatial gradient of our geometric density
model, such estimates are noisy in practice. We instead
learn a MLP that predicts normals which is supervised by a
monocular normal predictor on our input images [15].

Surface roughness. Classic models of specularity com-
pute the dot product between the viewing angle and angle
of reflectance from an incident light source, where the angle
of reflectance is computed by mirror-flipping the incident
angle across a surface normal (Fig. 2). However, for radars,
where transmitters and receivers are collocated, the viewing
and source angle are identical, implying that the quantity of
interest is the dot product between the viewing angle ω and
surface normal n. Retroreflective surfaces generate strong
returns when viewed fronto-parallely, with a response that
falls when viewed off-angle. To capture different rates of
fall off, we make use of spectral basis functions

βρ(ω · n) ≡ e−
1
ρ (1−max(−ω·n,0)), ρ ∈ P. (7)

We now can define our final model of radar reflectance:

cr(xi,ω) = fradar(lgeor , {βρ(ω · n)},ω; θradar) (8)

3.5. Scene Scale Optimization

In order to optimize fgeor and fradar using doppler inte-
gration proposed in DART [21], we require knowledge of
the true metric sensor velocity. Because COLMAP-derived
sensor poses are scaleless, it is important to obtain metric
scale for each scene. We observe that for scenes of different
scales, range-doppler images contain structures that appear
more expanded or compressed on the range axis as shown in
Fig. 6, hence we propose to leverage our geometry sharing
scheme to perform scale optimization by exploiting such
structure information. From a pre-trained fgeoc , we render

range-doppler frames using αc, and use the difference in
shape of the structures alone between the ground truth and
synthesized radar frames to optimize for scale using only a
Structural Similarity Index Measure (SSIM) loss. Refer to
Fig. 6 to the optimization process and Appendix for evalua-
tion of our learnt metric scale.

4. Experiments
We validate the efficacy of RadarSim through experiments
on a diverse set of indoor and outdoor scenes.

Dataset. We used a handheld data collection rig with a
radar and camera for data collection. The rig’s compact
and portable design enabled us to collect 8 sequences each
between 3-5 minutes duration in a diverse set of indoor and
outdoor environments; we provide detailed descriptions of
the data collection rig and collected traces in the Appendix.

Baselines. We evaluate our multimodal framework against
DART [21] and Radarfields [6], the state of the art meth-
ods for radar-based 3D reconstruction, on the quality of
reflectance and transmittance field learned by RadarSim:
rendering out reflectance by tracing rays from camera pixels
into the 3D neural field and accumulating reflectance using
rendering weight computed with learnt radar density. We
also evaluate on radar novel view synthesis in range-doppler
frame quantitatively and qualitatively which shows the effec-
tiveness of modelling radar reflectivity by reproducing the
input signal while being capable of generalizing to unseen
radar frames. We demonstrate our model can create high
resolution visual rendering of radar reflectance and density,
essentially a high resolution radar, from the same input low
resolution radar frames. We also compare RadarSim with
DART [21] baselines (CFAR, Lidar, Nearest Neighbor) in
Tab. 2, demonstrating improvements over them.

4.1. Qualitative Results: High Resolution Radar
Simulation

We visualize the quality of RadarSim against DART in Fig. 3.
Our multimodal framework creates a high resolution render-
ing of radar reflectance field by leveraging shared geometry
with RGB reconstruction, achieving a much better radar
simulator than baselines. We are able to show structures
that radar strongly reflects off such as retro-reflector like
structures such as inset corners, bottom of cars, light on
the ceiling. We also demonstrate surface normal-dependent
specular reflection, e.g., when we point toward a surface,
reflectance is strong. This is better viewed in our included
videos in Supplemental materials. We are also able to dis-
tinguish materials such as metal, which is usually a strong
reflector of radar, from walls, which are weak reflectors, as
well as materials that radar signals transmit through such
as glass from other non-transmissive materials. We further



Figure 5. We show range-azimuth reconstructions of RadarSim and DART [21]. Recall our input radar data is recorded with 8 antennae,
which limits the angular azimuth resolution. We can use our neural reconstructions to construct plots rendered with virtual radars with any
number of antennae, allowing us to "super-resolve" additional detail across azimuth angles (e.g., we can distinct parked cars with even more
detail than DART).

visualize synthesized range-Doppler frames for antennae
held-out during training compared to ground truth and those
synthesized by baselines in Fig. 4. RadarSim ’s simula-
tion appears most similar to the ground truth, showing its
superiority in generalizing to unseen view directions and
radar intrinsics. We also visualize synthesized 8-antenna and
simulated 128 antenna range-azimuth radar frames in Fig. 5,
showing RadarSim ’s ability to reconstruct sharper geome-
try and radar reflectance field and effectiveness in improving
azimuth resolution of single-chip radar.

4.2. Quantitative Results

To evaluate radar novel view synthesis, we applied our
model to a holdout test set consisting of the last 20% of
each sequence, and computed the Structural Similarity In-
dex (SSIM) and Peak Signal-to-Noise Ratio (PSNR)1 of the
synthesized range-Doppler frames against their respective
ground-truth frames. RadarSim achieves higher PSNR and
SSIM compared to baselines (Table 2). We further evalu-
ate view extrapolation by splitting each sequence spatially,
where our model out-performs baselines by a big margin,
showing our model’s effectiveness in leveraging camera in-
formation for generalizable radar simulation.

4.3. Density Estimation for Occluded Surfaces

Radar has the capability to penetrate certain materials that
are opaque to RGB cameras, such as cloth, cardboard, and
foam. Because our multimodal model estimate different
geometry for radar and RGB camera, we show in Fig. 7
and 8 that utilizing our multimodal model, we could estimate
“emptiness" of occluded surfaces in high fidelity.

4.4. Ablations
Performance when not using BRDF bases and sampling
We analyze the effect of BRDF bases and proposal network
for radar. As shown in Fig. 9, our BRDF bases models
sharp reflectance change based on angle between normal and
view direction, while SH view direction encoding is much
lower frequency. We also ablate on the effect of our shared

1Similar to [21], we also account for the sparsity of range-Doppler
frames by ignoring regions of the range-Doppler image which are under a
per-sequence noise threshold; refer to the Appendix for the procedure we
used to calibrate this threshold.
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Figure 6. Scale optimization process. Recall that our pipeline
uses COLMAP to infer up-to-scale camera poses. We use radar to
metrically-upgrade our scene reconstruction by optimizing for the
scale that produces the best (metric) range-doppler reconstruction.
The (left) plot shows the optimization curve, where the scale factor
adjusts from a randomly initialized value of 1 to a final optimized
value 0.483. The (right) images display range-Doppler renderings
with the initialized scale of 1, the optimized scale of 0.483, and
the ground truth range-Doppler frame with a scale of 0.503. The
optimized scale deviates from the ground truth by only 3.98%.

proposal network with radar to generate radar ray samples;
it produces sharper geometry for RadarSim.

Ablations with “naive" RGB-radar baselines Tab. 2
shows two additional variants of a “naive" baseline:
radar/RGB images rendered with the same occupancy pre-
dicted from a shared geometry encoder, using the same Ner-
facto [50] and DART [21] rendering process (excludes our
geometry sharing (Sec. 3.2), BRDF encoding (Sec. 3.4), and
ray sampling (Sec. 3.3) solutions.
• RGB-only geometry: Geometry encoder is pre-trained

only by RGB loss, frozen and queried by the radar MLP
that learns to predict reflectance. Performance drops sig-
nificantly showing it is insufficient to “use" the geometry
from RGB camera because radar has its unique transmis-
sive properties.

• Fully-shared geometry: Same as above, but geometry
encoder is jointly trained using both RGB and radar losses.
This remains inferior to RadarSim showing our proposed
solutions effectively help reproduce radar reflectance.

5. Conclusion
We propose RadarSim, which leverages the complementary
properties of radar and cameras with a unified differentiable
renderer to learn high-resolution radar-specific 3D geometry
and simulate more accurate radar range-Doppler images. We



(a) (b) (c) (d) (e)

Figure 7. RGB birds-eye view of the scene (a), radar occupancy αr slice (at 0.5m in height) (b) reconstructed by RadarSim. Reference RGB
images (c) and corresponding depth map rendering using radar occupancy (d) and camera occupancy (e). Because radar transmits through
materials such as plastic cardboard, foam, etc., such geometries (annotated in red) do not appear in the radar occupancy slices or depth
renderings. We also compare boxes in purple (cardboard box with electronics) and green box (empty cardboard box), which the empty box
does not show up in radar occupancy map or depth map rendered with radar occupancy.

Figure 8. A tent with (top) a person sitting inside, shown as an RGB image (left), radar reflectance rendered from radar occupancy
(left-center) and camera occupancy (center), depth map rendered from radar occupancy (right-center), and camera occupancy (right). As
radar can transmit through cloth, radar density reveals the presence of a person, while camera density is unable to do so.

Comparison to Prior Art SSIM PSNR

RadarSim 0.821 29.08
Radarfields [6] 0.771 27.80

DART [21] + pose opt 0.799 28.47
DART [21] 0.784 28.00

DART
baselines

CFAR points 0.671 24.45
Lidar occupancy 0.733 28.30
Nearest Neighbor 0.725 25.36

Diagnostics SSIM PSNR

Extreme
novel-views

DART[21] + pose opt 0.747 27.14
RadarSim 0.771 28.05

Geometry
ablations

RGB-only geometry 0.771 28.36
Fully-shared geometry 0.798 28.53

Architecture
ablations

w/o Bases 0.802 28.78
w/o Sampling 0.805 28.82

Table 2. Top: RadarSim outperforms radar-only prior art such as
DART and RadarFields. We also compare to the baselines such
as lidar occupancy and nearest neighbors. Bottom: Diagnostic
Analysis. We find even stronger performance deltas for extreme
novel-views, by spatially splitting up scenes into a train-vs-test split
(instead of splitting up scene logs by timestamp, as above). We
also compare to a "naive" variant where radar occupancy is fixed
to be identical to the pre-trained RGB model. Optimizing such a
fully-shared model for both RGB and radar reconstruction helps
somewhat, but still unperforms RadarSim. Finally, removing the
reflectance model or the radar ray sampler modestly hurts.

show the applicability of RadarSim across several diverse
indoor and outdoor scenes and demonstrate that implicit ge-
ometry sharing can be an incredibly powerful tool for sensor
fusion in 3D reconstruction for sensors with greatly vary-
ing characteristics. While RadarSim can leverage cameras
to improve radar simulation, one limitation is that the re-

Figure 9. Ablation on our proposed BRDF bases encoding to model
view dependence (second to the right) and sampling (right). We
show that we model high-frequency normal-dependent reflectance
changes: when view direction points toward the surface normal,
strong reflectance is shown, and quickly decreases when view-
direction deviates from the normal. While conditioning with spher-
ical harmonic encoded view direction can model such effects, the
view-dependence is much lower frequency, producing a blob in
place of a dot. Without proposal sampling, render radar geometry
is much cloudier compared to RadarSim.

liance on cameras for high resolution angular information
may degrade performance under conditions where camera
data is compromised, such as in low light or environments
with shiny surfaces. Additionally, despite enhancing radar
reconstructions, range-Doppler accuracy remains limited by
radar’s inherent spatial resolution. Motivated by the strong
performance of RadarSim, we believe other sensors could
be integrated into a neural-implicit multi-sensor field. We en-
vision a future system that learns shared geometry from any
sensor subset and dynamically adapts to available modalities,
fully leveraging sensor synergies for scalable multimodal
scene understanding across diverse environments and tasks.
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