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Abstract

Cooperative perception between vehicles is poised to offer robust
and reliable scene understanding. Recently, we are witnessing ex-
perimental systems research building testbeds that share raw spa-
tial sensor data for cooperative perception. While there has been a
marked improvement in accuracies and is the natural way forward,
we take a moment to consider the problems with such an approach
for eventual adoption by automakers. In this paper, we first argue
that new forms of privacy concerns arise and discourage stakehold-
ers to share raw sensor data. Next, we present SHARP, a research
framework to minimize privacy leakage and drive stakeholders to-
wards the ambitious goal of raw data based cooperative perception.
Finally, we discuss open questions for networked systems, mobile
computing, perception researchers, industry and government in
realizing our proposed framework.
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1 Introduction

Cooperative perception is an emerging networked-systems appli-
cation domain that involves sharing spatial sensor data between
vehicles to enhance vehicle capabilities, safety, and user experience.
As self-driving moves to higher autonomy levels, reliability is key.
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Cooperative perception, done correctly, can enable reliable machine
vision detecting events ahead-of-time by extending the range of
perception in both normal and adversarial weather. For example: An
accident detected on a route can be used to reroute other vehicles.
Black ice detected at a corner can be used to warn all following ve-
hicles to turn on traction control. Sharing of such locally processed
data ("events", bounding boxes, semantic labels) has been the focus
of the initial wave of research and commercialization. However,
raw spatial data (camera, lidar and radar) sharing between vehicles
is touted to bring the next wave of benefits from cooperative per-
ception where the "whole is greater than the sum of its parts" is
realized. For example: lidar return from small surface area objects
like pedestrians yield only a handful of points, but when stitched
with other vehicle’s lidars, the densified point cloud can robustly
detect critical objects. Using raw data as input to learning models
has dramatically improved perception [21, 24, 39, 41, 44]. We refer
to data as "raw data" even though the actual communicated message
is a compressed/encoded version, as long as it is not represented in
a lossy style (like "events" or bounding box).

Realizing the power of raw spatial data demands innovation in
perception, systems to realize high throughput, low latency, and
methods to guarantee data confidentiality, integrity and availability.
The expectations on all fronts are pushed to extreme levels than
for processed data sharing. Recent works including RAO [44] and
RECAP [32] have extensively discussed the challenges within data
synchronization and point cloud registration. While there are open
challenges that are being addressed in computer vision, networking
and mobile computing, we jump hoops to consider the eventual
practical barrier: privacy of raw data streams. This problem is
rarely considered by recent research, but we argue that it is of
utmost importance for adoption by networked vehicles. We begin
by systematically showing why this is a first-order concern.

Today, auto manufacturers have privacy agreements with con-
sumers that decide how data generated in their vehicle can be used.
A single auto manufacturer can even share processed data within
its ecosystem to generate timely safety alerts (e.g: Mercedes E & S
class). However, because of the diversity and the number of players
in the auto industry, the vision of cooperative perception can be
fully realized only when multi-automaker collaboration is possible.
An obvious challenge that emerges with multi-automakers is the
mismatch in privacy agreements. One auto’s consumer may opt-in
for sharing data to third parties for added services, another may
opt-out. Makers could also have different fine print in their agree-
ments. So, how can the shared data be used? Should it be held to
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ego-vehicle (local) or collaborator’s standards? Beyond this, new
forms of privacy concerns unique to raw spatial data emerge as
follows:

Participating vehicle’s location: Typically, when spatial data is
shared, for stitching purposes, accurate pose associated with the
data frame composed of global location (from GPS) and a finer pose
estimation (from local processing) is shared [18, 42, 43]. This pose
data (used even with processed data sharing) would be shared under
pseudonyms in line with privacy-preserving feature of vehicular
communication standards [16]. At first glance, this seems to re-
duce the utility of data to be short-lived and not linkable over time.
However, just raw spatial data alone is rich enough to extract pose
(through visual localization) [28, 36] and identify vehicles (through
sensor noise, driving patterns, routes) over long-terms [8, 11]. To-
day’s vision foundation models like VGGT [37] and MapAnything
[19] make it easy to extract such data. The receiving vehicle could
monetize these patterns with third-party insurance or advertising
companies.

Intellectual property of sensor design: A huge concern for
auto manufacturers is that when raw data is shared, the surface
area for reverse engineering to learn trade secrets about low-level
sensor quality is greatly exposed. Moreover, as mentioned above,
despite pseudonyming, these low-level properties can be linked to
automaker, auto type, sensor vendor etc. over long terms. Several
billions of dollars are spent on research and development of spatial
sensor hardware and integration. Beyond cost, sensors also vary
greatly in quality. For example, one automaker may choose a camera
vendor that offers superior stabilization as part of low level IP,
another may have inferior stabilization. This begs the question:
why should anyone participate in raw data sharing to give away
secrets on the quality of their data?

Concerns of such a high magnitude have made several automak-
ers, auto consumers, and the public quite skeptical about raw data-
based cooperative perception [4, 6, 7, 22]. This paper presents
SHARP!, a framework to alleviate privacy concerns and skepti-
cism, and to encourage investment in all aspects (algorithms and
systems infrastructure) relevant to cooperative perception with
high fidelity, raw data.

Rather than dealing with these concerns at the cross-automaker
privacy agreement level, the first question to ask is if past privacy-
preserving computation frameworks (Secure Multi-Party computa-
tion and Fully Homomorphic encryption [2]) are suitable to limit
data sharing to specific functions. Although it is theoretically feasi-
ble to represent raw spatial data operations as additions and multi-
plications, the high number of samples in cameras, lidars and radars,
and the communication overhead for decentralized operations ren-
der such options to be slow for real-time cooperative perception
tasks with 10s-100s of milliseconds tolerances.

SHARP’s agenda is twofold. First, we propose a location obfus-
cation design that makes it challenging for raw data recipients to
extract true auto location. Our design is inspired by the dramatic
recent shift in 3D vision foundation models. Second, we look for
inspiration in other industries where competitors have shared raw
data for mutual benefit towards a shared goal. While safety can be
a unifying cause (example: telcos should route all E911 calls, not
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Figure 1: (a) shows the privacy leakage due to raw data stream-
ing from blue car to the green car; (b) abstracts typical sensor
architectures and shows raw data types

just their customers), there are ways (like processed data sharing)
to achieve simple metrics of safety without IP data leakage. To
reap the benefits of raw data, we argue and lay out the need for
a coordinated effort in defining open standards that preserve IP,
multi-vendor agreements, and cost models.

SHARP demonstrates our line of reasoning, backed by a fea-
sibility study, towards solving this major problem. Our hope is
to enhance awareness of this seldom cared-for, last mile problem
to multiple stakeholders and thereby spurring designs of privacy-
cognizant holistic solutions. We note that raw data sharing needn’t
be the de-facto standard for cooperative perception (with varying
network capabilities), but should the infrastructure allow it and the
environment demands it, it is imperative that we tackle this.

2 The Need for Raw Data

Raw spatial sensors surpass other low bandwidth data types in
cooperative perception. Let us look at advantages that only raw
data sharing can offer.

Cameras: Visible light cameras are sensitive to lighting and weather,
and natively lack depth understanding. Cooperative perception can
compensate for these by sharing (1) specific objects-of-interest (e.g:
accidents) that are already detected locally by algorithms running
on pixel-wise data; (2) pixel-wise image data to yield enhanced 3D
understanding. Structure-from-motion, photogrammetry, neural
3D understanding all leverage pixel-wise data [13, 26, 27, 30, 33],
which offers higher fidelity perception and is widely used.

Lidars: Lidars are sparser than cameras. Conventionally, the rawest
level of data made available by vendors is point clouds obtained
from the first return from specific laser directions. So, the lightest
way to share lidar data is bounding boxes on 3D point cloud, ETSI
standards [12] for example. However, for weak objects or cars in
foggy conditions where the range is reduced, detection is hard with
only a few spatial points. With point cloud sharing or full time
delay histograms available with SPAD lidars, we can obtain dense
aggregated point clouds and thus, robust object detections.

Radars: Solid-state radars are orders of magnitude sparser than
cameras and lidars. Typical processing involves thresholding of raw
histogram data to convert to sparse point clouds. The first level is
the accumulation of point clouds that leads to the densification of
objects and better object detection [3]. Second, we have exchange
of intensity-only raw data. Third, phase-sync aggregation (aka
coherent aggregation) can dramatically boost the detectability of
weak objects such as a pedestrian standing next to a bright object
like a stop sign. Here, we consider I/Q data and unthresholded,
intensity-only data as "raw radar data".
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Figure 2: SHARP’s approach to hide true location: use fast 3D
understanding and rendering to constantly spoof realistic,
raw data from a random view point.

We note that low-level signal processing blocks (see Fig 1) might
be attached to sensors and only then expose raw data. What we
refer to as "raw data" also varies from sensor-to-sensor. It is clear
that there is a data hierarchy. Raw data is at the top of this hierarchy,
offering the highest fidelity and enabling algorithms that enhance
the degree of reliability.

3 SHARP’s Design

In this section, we alleviate privacy concerns in Sec. 1.

3.1 Tackling vehicle’s location leakage

Sharing raw spatial streams (cameras, lidars, radars) inevitably en-
ables recipients to reconstruct sensor and vehicle poses. Our key
insight: generating sensor measurements from alternate viewpoints
protects the true location (Fig 2). By constantly randomizing view-
points, true location tracks remain hidden even when pseudonyms
are constant.

Preliminary simulation: To quantify the feasibility of this pri-
vacy paradigm, we conduct a large-scale simulation across all 73
scenes in the OPV2V [40] dataset, with 50 rollouts per scene. For
each rollout, we randomly select one vehicle as the ego vehicle (i.e.,
the receiver) while surrounding vehicles (i.e., sharers) share percep-
tion data at forged locations—coordinates perturbed by Gaussian
noise. We then evaluate the privacy level of these sharers from two
perspectives: (1) the deviation of forged trajectories from ground
truth trajectories, and (2) the likelihood that the ego vehicle can
correlate a sharer’s identity with a physical vehicle observed in the
environment. Within the ego vehicle, we deploy a nearest neighbor
algorithm for tracking sharers and employ the Hungarian algorithm
for matching between inferred and physical trajectories. We use
RMSE and N-to-N matching error rate (confusion rate) as evalua-
tion metrics, with results presented in Fig.3. The results reveal a
clear trend: as the offset between forged and ground truth positions
increases, the ego vehicle’s ability to identify sharers diminishes.
Specifically, at an offset of 12 meters (equivalent to 4 lanes of line-
of-sight distance), the confusion rate reaches 25% and the overall
RMSE exceeds 45 meters. This large-scale simulation demonstrates
SHARP’s effectiveness in protecting sharer privacy.

Challenges: Although obfuscation can be achieved, such a solu-
tion is valid only if the sensor measurements generated are realistic.
Novel View Synthesis (NVS) involves 3D reconstruction from lo-
cal sensor measurements and rendering novel views. Approaches
range from classical photogrammetry [26] and SLAM [33] to recent
neural methods [13, 27]. However, 3D reconstruction takes sec-
onds to hours—incompatible with automotive perception at 10+ Hz.
Context-specific spoofing [31] lacks generalizability, necessitating
full 3D understanding.
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Figure 3: Preliminary simulation on the OPV2V scenes.

Our approach: Fortunately, recent breakthroughs like Dust3r [38]
and Visual Geometry Grounded Transformers (VGGT) [37] have
revolutionized 3D understanding, reducing reconstruction time to
milliseconds—orders of magnitude faster than prior work. Rather
than iterative optimization, large-scale feed-forward models per-
form fast inference from 2D images to 3D points, similar to monoc-
ular depth estimation [14] but with dramatically improved quality
through massive training data and model scale. This paradigm shift
enables low-latency automotive applications. We propose vehicles
to use VGGT-like models [37] for local 3D understanding, and then
render novel views at randomized locations in real time. From our
simulation, such an obfuscation creates confusion in extracting
the true vehicle pose. Sec 4 shows the feasibility and realism of
the novel views. VGGT requires extensions for comprehensive au-
tomotive deployment. Sec 5 discusses open challenges, including
occlusion-aware viewpoint selection.

While novel view based obfuscation masks exact trajectories
they can still reveal general location (e.g., an intersection). To pre-
vent receivers from building long term associations of general loca-
tions, we need to make it more challenging to map time-varying
pseudonyms to uniquely identifiable sensor traits. Sec 3.2 masks
low-level sensor details and prevents building long term location
tracks based on general locations.

3.2 Tackling IP leakage

IP leakage from sharing raw spatial sensor data is so serious a
concern that it could just render all research efforts towards raw
data based cooperative perception moot.

Tiered relationship in automotive markets: In experimental
testbeds built with development kits [44], one can access raw data.
However, the auto industry is layered as tier 1, 2, & 3 depending on
the level of interaction with the final automaker. The vast majority
of final automakers only have access to processed sensor data from
tiered vendors due to IP protection. Vertical integrators like Waymo
and Tesla, either make sensors in-house or have special contracts
to get hardware from non-competitors with access to raw data
(Samsung, LG) for building their own proprietary perception. In
a competitive scenario, why should one with access to raw data,
share and leak secrets? Well, Sec 2 has shown significant benefits,
so this is a utility-privacy trade-off.

Strawman solutions: Approaches like neural encoders are insuffi-
cient, because to use raw data, a trained decoder [39] at the receiver
is needed and one would then have low-level sensor access. We
could also consider cryptographic one way functions. But, they are
not designed with the intention to preserve spatial correlations. So,
the receiver would need to convert back to raw data before running
cooperative perception. Another solution could be to add noise
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to the raw data to make it confusing for IP theft. However, each
hardware has different capabilities (sampling rate, pixel / antenna
count, sensitivity etc.), and metadata about these capabilities should
be shared for the recipient to fully use the raw data. This would
directly give away critical data.

Our approach: We call for a common unifying representation that
all automakers (with raw data) can agree on. To this end, we argue
that a open low-level stack from just above the sensor hardware till
"raw data" must be executed to arrive at a common representation.
We envision that such a stack would be built using public knowledge.
It is quite possible that such a stack will be inferior to running a
proprietary stack. But atleast, such data can be shared without any
IP concerns. Thus, we propose a common stack for the purpose of
raw data cooperative perception.

To fully execute an open standard, one needs not only an open
low-level signal processing block but also the ability to control
sensor configs and hardware. For example, even though a vehi-
cle may have 10 antennas, the open config could expose only 1
antenna’s data — protecting the vehicle’s secret about number of
antennas. Standardizing hardware is simply infeasible! Modifying
sensor configs and running a low-level software block are also in-
convenient, because each vehicle may want to run their proprietary
stack regardless — for local perception.

Our idea is to offset the inconvenience by carefully swapping
from proprietary stack (Fig 4a) to the open stack (Fig 4b) at a duty
cycle. In designing a suitable scheduling algorithm, the key con-
straints to consider are computing power, latency arising as a result
of swaps, and the overall end-to-end latency needed for coopera-
tive perception reaction times in challenging environments (bad
weather, etc.). For example, one can switch to open configs and
run open stack every once in 200 ms (5Hz) or based on demand,
whereas the proprietary stack runs every 50 ms (20 Hz).

Standardization: To implement this, we still need to deal with
hardware IP. Hardware varies widely in capabilities, and sensor
vendors often tightly integrate hardware, configs and low level
software. While configs and low-level software can rely on pub-
lic, open stacks, we need an interface to various hardware. Thus,
we have arrived at a bottleneck which can only be resolved via
standardization. We envision bringing different hardware sensor
manufacturers together to implement a compact proprietary layer
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Method success rate | pose err(rmse) | time(s)/frame
VGGT 183/183 0.6900 0.089
DROID-SLAM 183/183 1.2982 0.166
COLMAP 43/183 2.8477 5.150

Table 1: A receiving car can easily estimate camera pose from
received raw images with VGGT.

to map their true hardware output to an agreed upon, hardware-
agnostic, open format. On top of this, other features can also be
implemented on an open stack (see Fig 4). For example: even if a
radar uses a high sampling rate, a sensor vendor could modify the
data to only satisfy higher-level open format requirements, on radar
range and resolution. Other hardware variations to be addressed
in the proprietary layer include waveform parameters, effect of
sensor noise, mosaicing, size, field of view, gain, number of lidar
beams, number of antennas etc. Similarly, the manufacturer would
also need an interface to map the open sensor configurations to
the hardware capabilities. This calls for efforts to (1) create a tax-
onomy and represent high-level hardware capabilities and define
shareable open formats, (2) build (proprietary) software to translate
open configs to native hardware, (3) build (proprietary) software to
translate true raw data to open format.

Cost models: Despite the need to share raw data for mutual
safety, a stack swapping technology solution is likely to face some
opposition (for resource-constraints reasons), unless we incentivize
it as a revenue-generating stream. We argue for a cost model that
a recipient pays for if they subscribe to raw data. Since the stack
is open and based on publicly available information, we can treat
each data to be of identical value. The total cost would be based
on how frequently the recipient asks data, and any priority levels
that they expect to be served at. For example: in harsh weather or
when a vehicle is behind a long truck on a single lane highway, that
is, when raw data need is extreme, we expect to switch priority to
higher levels. We expect multi-party agreements facilitated through
a lightweight, common billing system.

By scheduling stack swapping, creating standards for an open
stack and incentivizing automakers with additional revenue stream,
SHARRP facilitates raw data exchange. As we build this, we should
also work towards integrating it with default automotive embedded
workflows.

4 Feasibility

Here, we show the privacy problem with raw data and feasibility of
our approach. We run experiments on OPV2V [40] driven by Carla
simulator [10] with Nvidia V100S 32GB.

Vehicle pose could be easily inferred from raw data: We per-
form a demonstrative experiment that estimates the camera poses
from streams of unconstrained RGB images. 183 streams with 10
frames each. VGGT as a vision foundation model can predict cam-
era poses and depth maps simultaneously. Table. 1 shows the fast
inference, and accurate pose from VGGT compared to traditional
method like COLMAP [30] as well as the SoTA visual SLAM work,
DROID-SLAM ([34], confirming that location privacy is a serious
concern.

SHARP’s novel view synthesis to obfuscate vehicle location
is effective: As proposed in Sec 3.1, contributor performs 3D scene
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Figure 5: A demo on Town06 of OPV2V dataset, where con-
tributor pretends it is at location 2.

Shared Data @1 @2 true @3 @4
MSE 0.0108 | 0.0083 | 0.0088 | 0.0089 | 0.0117

No Coop @5 @6 @7 @8 @9
0.0142 0.0127 | 0.0101 | 0.0086 | 0.0117 | 0.0103

Table 2: Relative depth error when ego agent does no co-
operative perception and when sensor data from different
viewpoints are shared by contributor.

understanding with local data via vision foundation model, then
renders sensor data from a novel view, and only such novel view is
shared to an ego-agent. The rendering could be achieved by either
plain point projection or through 3DGS [20] to reduce pixel holes.
The ego agent then leverages the received views and its own sensor
data to understand the surrounding. Fig 5 shows a qualitative result.
Table 2 shows the overall relative depth estimation error 2. Ego
car achieves a lower error with cooperative perception, benefiting
from shared data that is either true or from a novel view. Across all
9 locations, the error is comparable and generally closer locations
yield lower errors.

Attacks: One concern with novel views is the potential risk of
recovering how far away the novel view is from real pose based on
the quality of shared rendered images (holes, missing pixels etc). It
could be resolved by 3D reconstruction over a longer context. For a
frame sequence from nuScenes [5] dataset, we have observed that
the longer sequence we use to reconstruct the 3D point cloud, the
fewer missing pixels when we perform NVS at an adjacent viewport,
via a plain point cloud reprojection, as shown in Fig.6. One could
mitigate this by applying random masks over the rendered images
(losing some 3D information but protecting any leakage of location)
or using inpainting methods [29].

2Qutput of VGGT is non-metric, hence popular benchmark on object detection is not
a suitable evaluation task in this case.
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Figure 6: NVS with different frame length: 2(L), 8(R)

Privacy-Safety Trade-off: A primary concern with location ob-
fuscation is that shared data from a synthesized pipeline may com-
promise fidelity. We address this trade-off via three perspectives.

¢ Long-term reconstruction accuracy: VGGT-Long [9] demon-
strates that feed-forward 3D reconstruction can scale to
kilometer-level outdoor environments while maintaining
high fidelity. On the Waymo Open Dataset, VGGT-Long
achieves an average Chamfer Distance of 2.021m—significantly
outperforming traditional methods like DROID-SLAM (4.870m).
Furthermore, it successfully reconstructs trajectories span-
ning up to 3.7 kilometers on KITTI sequences and maintains
stable performance across diverse weather conditions, such
as fog, rain, and sunset, in Virtual KITTL

¢ High Quality NVS: Regarding novel view synthesis, 3DGS
methods on EUVS benchmark [15] achieve a PSNR of 19.53
dB and SSIM of 0.75 for interpolated views. This quality can
be further augmented by video diffusion-based approaches;
for example, ReconDreamer++ [45] attains a PSNR of 20.52
dB, SSIM of 0.7033, and LPIPS of 0.3057. Crucially, these
synthesized views preserve the geometric accuracy required
for downstream perception: ReconDreamer++ achieves a
Novel Trajectory Agent IoU of 0.365 and Lane IoU of 51.33 for
3-meter lateral shifts on Waymo. These results indicate that
privacy-preserving NVS generates shared data of sufficient
quality for cooperative perception.

e Inherent robustness of cooperative perception: Even
if shared data contains inaccuracies, cooperative percep-
tion systems are inherently designed to handle erroneous
inputs. Methods like ROBOSAC [23] introduce sampling-
based defense strategies, comparing results from random
subsets of teammates to reach consensus, which enables ro-
bustness against 80-90% outliers. Similarly, CP-Guard [17]
employs probability-agnostic sample consensus (PASAC) to
detect and eliminate inconsistent data without requiring
prior knowledge of error distributions. These approaches
demonstrate that collaborative perception naturally incor-
porates mechanisms to verify data consistency and reject
outliers, regardless of whether they stem from adversarial
attacks or reconstruction artifacts.

5 Open Questions & Discussion

Vision foundation models: While vision foundation models have
revolutionized 3D understanding, key challenges remain: (1) extend-
ing robust performance from static to dynamic scenes, (2) obtaining
metric-scale rather than relative depth estimates, (3) achieving
occlusion-robust view selection, and (4) ensuring resilience against
sophisticated adversarial attacks (e.g., physics-based material reflec-
tion analysis), (5) extending to other spatial sensors (radar, lidar).
Despite these challenges, feedforward models like VGGT show
promise for low-latency 3D perception.
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Hierarchical data fidelity: Current cooperative perception sys-
tems operate with either all-processed or all-raw data. Given raw
data’s bandwidth demands, we advocate for hierarchical fidelity
with opportunistic switching to maximize data quality while acti-
vating privacy preservation when sharing raw data. This requires
mechanisms for activating, maintaining, and deactivating SHARP’s
privacy methods, with strategies to bootstrap open stack adoption.

Privacy as a first class citizen for networked vehicles: Raw
data cooperative perception demands privacy-by-design alongside
bandwidth, latency, synchronization, sensor interference, and trust
considerations. While SHARP provides high-utility, privacy-safe
solutions, it doesn’t address all constraints. Networks may contain
mixed flows, leading to orchestration and rate control challenges.

World privacy: While roads are public spaces, raw data sharing
risks transforming vehicles into mass surveillance systems track-
ing pedestrians and license plates. Camera data particularly de-
mands privacy safeguards—techniques like face and license plate
anonymization before backend upload [35] should be incorporated
into open stacks to balance raw data benefits with world privacy
protection.

Implications for off-vehicle world understanding: Privacy safe
raw data processing extends beyond real-time cooperative percep-
tion to edge and cloud services like high-resolution map building.
While currently dominated by specialized fleets (e.g., Google Street
View), SHARP enables democratized, crowd-sourced mapping ac-
cessible to diverse stakeholders (smart city planners, municipalities)
at significantly lower cost and higher update frequency.

6 Conclusion

Multi-stakeholder groups are currently working to implement vehicle-
to-vehicle communication for sharing highly-processed, high-priority
safety messages [1, 25]. This paper looks even further ahead, ex-
ploring the exchange of high-fidelity, raw spatial sensor data be-
tween vehicles. For this to be practically adopted, privacy must be

a primary design consideration. We’ve identified several privacy
concerns that come with sharing raw data and proposed a compre-
hensive research agenda to address them. The goal of this paper
is to initiate research and international discussions on this topic,
aiming for the eventual adoption of raw data networking, similar
to what’s happening with processed data.
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